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I. IWTRODUCTION

In 1952 A. L. Hodgkin and A. F. Huxley, Yrofessors of
Biophysics at Cambridge University, published a now famous
series of papers [1, 2, 3, 4, 5] concerning the flow of
electric current through the surface membrane of a giant
nerve fiber of the squid Loligo. PFor this work they received
the Nobel Prize (shared with J. C. Eccles) in Physiology
and Medicine in 196%. 1In part of their concluding paper [5]
they constructed a mathematical model describing the propa-
gation of electrical impulses along the squid's axon. This
model was a nonlinear system of differential equations
consisting of one second order partial differential equation
of parabolic type and three subsidiary first order differ-
ential equations. Not wishing to contend with the partial
differential equation and desiring to deal only with the
fully develoned impulses (the so-called "steady state" or
"propagated action potential™), they altered the model by
assuming, based on clear empirical evidence, that the

voltage v satisfies the wave equation

Vix T 8 Vet = ©

where x denotes distance along the axon, t is time, and © is
the propagation rate of an impulse. This enabled them to
transform the partial differential equation into a second

order ordinary differential equation. Unfortunately, numerical

Ysolutions" to the new system were highly sensitive to 6.



Rather than impulse type solutions, grossly unbounded
solutions appeared to be produced in such a way that for

one given value of © the solution v of the second order
equation would appear to tend toward vnlus infinity while

for extremely small variations of this value the solution v
would appear to tend toward minus infinity. This discontin-
uous dependence on the parameter 8 and the apparent occurrence
of unbounded solutions created, in numerical practice, a
need for very unusual numerical methods of solution of the
system. Bounded “"solutions" were extricated from the system
by averaging unbounded solutions at slightly different
values of ©.

In formulating their equations, Hodgkin and Huxley did
not include the effects of core capacitance or inductance
when they related axon current to membrane current and
voltage. In 1966 H, M. Lieberstein, while Frofessor of
Mathematics at Indiana University, found that these important
effects could be included in the model without introducing
any new parameters [6]. He formulated a new model which
utilizes the same (empirical) equation for membrane current
density and the same three subsidiary equations which Hodgkin
and Huxley developed, but which gives rise to & hyperbolic
partial differential equation of second order which accompanies
the subsidiary equations. Dr. Lieberstein showed numerically
that a "steady state" satisfying the wave equation developed

asymptotically with time so that recourse to empirical



evidence for this behavior as a separate ad hoc condition,
as utilized by Hodgkin and Huxley, could be avoided. For
this steady state formulation the new model yields a first
order ordinary differential equation for voltage (instead
of second order as formerly), and thus forms an autonomous
system of four first order ordinary differential equations.
The solutions to the equations, which now can be handled
by entirely standard means, were shown numerically to be
bounded and no longer sensitive to variations in the
propagation rate. Turthermore, the agreement of the numerical
solutions of this new system when comrared to numerical
solutions of the Hodgkin-Huxley system and the empirical
evidence is excellent.

In a later paper [7, Part IT] Lieberstein investigated
the extent to which his modified Hodgkin-Huxley model of
nerve cells could be used as a general model of other
membranous cells such as skeletal muscle fibers, pacemakers,
receptors, and heart cells with a plateau type behavior.
This research involved the investigation of the accommodation
of the model to the application of a sustained constant
membrane current density IO. He showed numerically that
the gross behavior of the electrical properties of such
cells can be imitated by choosing appropriate values of the
parameters which occur in the model. By varying the IO
it was shown that the model exhibits the threshold "“on-off"

phenomenon observed in nerves, the plateau type behavior of



certain heart cells, and the phenomena of repetitive firing
of potential spikes as seen in both pacemaker cells in the
heart and receptor cells. Any desired (finite) number of
potential spikes could be achieved by applying the required
sustained constant membrane current density, and numerical
evidence strongly indicated a value of IO, termed the 1limit
of thresholds, which if apnlied to the model would initiate
an infinite chain of impulses. All this, of course, depended
on a numerical justification given for using the steady

(or asymptotic) state approximately to treat the local
stimulation effects.

The present paper considers this last model discussed,
that of Lieberstein's modified Hodgkin-Huxley equation,
altered so as to accept application of a sustained constant
membrane current density, together with Hodgkin and Huxley's
three subsidiary equations. This model is an initial value
problem for a highly nonlinear autonomous system of four
first order ordinary differential equations. The independ-
ent variable is time, and the four dependent variables
are v, n, m, and h where v is membrane voltage and n, m,
and h relate to membrane conductances.

We first prove an existence and uniqueness theorem
for solutions of the system of differential equations in
a neighborhood of the initial point and then extend this
solution to the right maximal interval of existence which

until we show that the solutions are bounded will be either



[o,m or [0,b], where b would be the time when the
solutions leave the closed domain that is specified in

the theorem. It is shown that the system is analytic,
implying that the solutions will be analytic, a property
that is found to be wvaluable in limiting the behavior of
the solutions. The fact that solutions exist and are unique
allows us to prove several results that provide a preview
of the behavior of the solutions. In order to determine
additional information, we next prove that the solutions
are bounded, a fact which proves the existence of the solu-
tions for all nonnegative time.

Boundedness is proved in steps. First, it is proved
that n, m, and h are all bounded by zero and one. Then
three new functions are introduced whose behavior depends
solely on the solution v and which help to determine the
behavior of n, m, and h. Using these three functions and
subsequent propositions which follow from their use, we
prove lower boundedness and then upper boundedness of the
solution v. For the upper boundedness it was necessary to
include an assumption which is justified by the original
intent of the model as described in the writings of Hodgkin
and Huxley, by a proposition which we prove, and by some
of the new numerical work which we have undertaken. In
the course of our investigations a second proof of lower
boundedness was discovered which uses an extension of an

elementary comparison theorem from the theory of Ordinary



Differential Equations. This method of proof is also
included in this paper. Because of a certain convention
on sign of voltage adopted in the original Hodgkin-Huxley
work (which we preserve, but which is apparently no longer
popular), lower bound considerations are by far the more
critical, and lower bounds are established without resort
to any assumptions that are extraneous to the system of
differential equations.

The boundedness of the solutions, as mentioned above,
guarantees the existence of a unique solution for all time
greater than or equal to zero. The boundedness of v also
enabled us to find new bounds for n, m, and h. But probably
the most important contribution of boundedness was that the
solutions must now be continuously dependent on any and all
parameters which occur in the system. We thus have a
mathematical proof that the extreme sensitivity of the
solution v to the provagation rate 6, inherent in the
original Hodgkin-Huxley model, has been completely removed
in the model as Lieberstein has reformulated it.

Dr. Lieberstein's numerical work [ 7] of altering the
equations by varying the maximum values of the conductances
is now mathematically Jjustified. Thus, one is now entirely
justified in freely testing the equations by varying
parameters to see whether they can model pacemaker cells,
smooth muscle fibers, heart cells with plateau type

behavior, etc., provided, of course, that one of the



standard numerical methods is used which is known to be
free of numerical instabilities. We use Runge-Kutta.

In the chapter concerning threshold phenomena we
examine the mathematical possibilities which when consid-
ered in the perspective of continuous dependence could
still govern the threshold phenomena demonstrated numerically
in [7]. Then we present some new numerical work by alter-
ing the parameter I_ (the sustained constant applied
membrane current density) which shows that the threshold
phenomenon occuring in the model is an extremely rapid (but
continuous) change of potential from what has been called
an "off" curve to an "on'" curve. For values of I, interme-
diate to the values which provide Yoff'' and "on" curves,
we exhibit "intermediate" solutions for v. It should be
remarked, however, that some of those who are thoroughly
experienced in scientific calculations have proclaimed
that they have never seen such sensitivity to a parameter
in a stable process. To "hit" halfway between a subthresh-
old and a suprathreshold curve, it has been necessary %o
vary IO in the seventeenth digit and to perform concomitant
high accuracy calculations. Thus there is a genuine
threshold phenomenon involved appearing to give sharply
discontinous behavior at the three digit level or higher;
that is, to stimulation changes of one tenth of a percent

or less.

Much has been written in the past hinting or hoping



that singular (or stationary) points are involved in the
mechanism governing the threshold phenomenon. This is
probably because the extremely rapid change of potential
from subthreshold to suprathreshold looked when graphed

like the graphs of solutions of equations in which a station-
ary point does appear. We prove a theorem that provides

an equation which determines the stationary points in terms
of the value of I . Then the equation is (successively)
solved numerically and these results are found to indicate
that the v codrdinate of a stationary point is a strictly
decreasing function of the parameter Io. It is shown that
for the values of Io concerned with the threshold phenomenon,
stationary points are not involved. They do, however, seem
to be involved in the behavior of the solutions as t
approaches infinity. This fact is of primary importance

for cells of plateau type behavior for, as will be seen,

it is possible to choose the value of voltage which the
plateau will "rest" on.

Finally, in the Appendix we present a theorem which
proves the equivalence of the system of four differential
equations and one first order integro-differential equation.
Although this equivalence was not used in the present

paper, it is closely related and may be used in subsequent

investigations.



IT. BACKGROUND

In order to present background material necessary for
an understanding of this paper and also to introduce the
numerous parameters and notations that are used, we begin
by summarizing the equations and models developed by Hodgkin

and Huxley and modified by Lieberstein.

1. The Hodgkin-Huxley (H-H) Excitation Equation

Hodgkin and Huxley [1, 2, 3, &, 5] separated the membrane
current density I into two parts: +the capacitive current

given by

C

)
otl<

2

M
and the ionic current with components
éKn?(v - vg), the potassium current,
ENam’h(v - Vyg)» the sodium current,

and

él(v - &.)’ the leakage current (chloride and other ions),

where CM is the membrane capacitance per unit area; v denotes
membrane potential difference (positive voltage is given by
outside potential minus inside potential); Vis Vygo Yy are
the equilibrium potentials of the ionsj; and éK’ éNa’ éx are
the maximal values of the specific conductances corresponding
to the ionic currents. The n, m, and h are dimensionless

variables which Hodgkin and Huxley used to describe the



specific conductances 8k and Bya s 1.4,
Bg = éKn“ ’
= 3
BNa = Bua® P-

The variables n, m, h satisfy the equations

%% =:an(v) . (1 - nﬂ —[Bn(v) . n]
(2.1) B =Jon(v) + (1 = w) =[By(v) - n]
g8 _fon( - (1 = B)]~[By(v) - 1]
where
[( 10)/10] .
(v (O‘l){-l + e;pE(v + 10)/10]} if v £ -10
“0t7 "o if v = -10,
Bn(v) = 0.125 exp(é%),
25)/10] ; -
T~ elpf{v + 25)/107 ) it v £ -25
o (V) =
1 if v = =25,
Ba(M) = 4 exn(35),
ah(v) = 0,07 exp(ﬁ%),
-1
B (V) = (1 + exp %592> :

10



The (H-H) excitation equation is

(2.2) I=2¢C

Q>|0>
<

- 4 - -
M + gl (v - vK) + gNam’h(v - VNa) + SL(V - Yi>

where I, v, n, m, h are functions of time; Cy, éK’ Vi éNa’
Via® 51’ v, are constants; and I is positive when directed
inward.

In this paver the values of these constants are the
ones given by Hodgkin and Huxley for the 6.3° Centigrade
case, and are the ones used by Lieberstein [6, 7] and also in

[8], [9]. We will use these values exclusively., For the

6.3° Centigrade case

Cy =1 wFarad/cm® = 10> msec/ohm cm® ,
EK = 36 mmho/cm” = .03%6 mho/cm®,
éNa = 120 mmho/cm® = .120 mho/cm® ,
él = .% mmho/cm® = .0003 mho/cm” ,
Vg = 12 mvolts ,
VNa = -115 mv ,
and
vy = ~10.5989 mv (value chosen so that when

the membrane voltage v = O and %% = 0, the membrane cucrrent

density I will also be zero).

To give I in terms of mamp/cm®, we would have

(2.2a) I =107 %% + .036 n' (v - 12)
+ .120 W h(v + 115) + .0003 (v + 10.5989).

The voltage v is measured in mv; the time t is measured in

11



msec; and x5 and BJ, where J = n, m, or h, are measured in
reciprocal msec. We also include here the values for other
parameters which will be used later:

a .02%8 cm,

R 35.4 ohm cm.
These give
(%)R = 2974,789915966- - - oum.t
We shall also use the symbol R for (2/a)Re’C. (In [c]). [s],
and [9], R = K and is given by 4.51084055 < K < 4.51084060

in [9].)

2. The Transmission Equation, the Equation for Membrane

Voltage, and the Steady State Equation

As mentioned in the Introduction, Hodgkin and Huxley
did not include the effects of core capacitance or inductance.
The equation they used [5, p. 522] to relate axon current
to membrane current and voltage was
i - (33
r/9x
where i is the membrane current per unit length; r is the

internal resistance per unit length (the external resistance

1 It should be noted that there is a technical error
in [6]. The value there for (2/a)R is 2974.8991, the
second 7 having been omitted. This error causes a slight
error in the propagation rate © used in [6]. However, the
error in (2/a)R is of the magnitude of 3.7 times 107 .

This extremely small error does not noticeably affect the
equations; hence, the values 2974.8991 for (2/a)R and
1.23138148 for & will be used in this, paper whenever data
from [6] is used. These values give R to be 4.51084054...,

12



is considered negligible); and x is the distance along

the fiber. Setting

and
R = na’r

where a is the axon radius and, therefore, I is membrane
current density and<R is the specific resistance of the
axon; and substituting into the excitation equation (2.2)
for I, they obtained their second order differential
eguation of parabolic type.

Lieberstein [ 6] used the more general equations relating

axon current to membrane current and voltage
(2.3) —9i, /B8x = i + (ma®C )3v/3t

(2.4) ~3v/9x = ri_ + [(1/na®)L]di, /9%

where iais axon current; Ca is axon self-capacitance per
unit area per unit length; and L is axon specific self-
inductance. After combining (2.3) and (2.4) and introducing
I and R, the new transmission equation is given by
v v v (g) (Q)IQI

(2.5 3xc ~ IO, 357 = RCq 3% + \a /R + \a /13t

1
Substituting equation (2.2) for I and using 6 = (a/2LC) 32,
where 6 is the steady state propagation rate and C is the
membrane capacitance (actually C = (a/2)C, + Cy, but (a/2)Ca

is negligible), the new equation for membrane voltage is

13



For the steady state equation it is assumed that

v 1\2%v _
-y -(§r>§gr = 0
which means that (2.6) becomes
-1
51-%7 = —§[<§)RC + <—e-7_1—c)(éKn“ + By, h + él):] %
.{éKKg)Rn“ + (éﬁ—c)n’ gré](v - Vi)

(2.7) d
* Byg [@I)Rm’h * (6 C) <3m b+ dktﬂ(v Y

Hodgkin and Huxley's subsidiary equations (2.1) now become

the ordinary differential equations

8 - @, (A - n) - g (M,

at
(2.8) - o (v)(1 - m) - B (v)m,
= (M@ - 1) - B (VIn.

14



e

R

C

Also, the (H-H) excitation equation (2.2) now becomes

dv

(2.9) I= Cgg+ éKﬁ'(v - K) + éNam’h(v - VNa) + %L(v - YQ)'

The initial values for the original Hodgkin-Huxley steady

state model are

v(t,) = v(0) = O,
(2.10) a;(0)
I(8g) = I(0) = 570Y + B,(0)

where J = n, m, or h., They are left unchanged. We shall

refer to the system consisting of equations (2.7) and (2.8)

together with the initial conditions (2.10) as the reformulated

Hodgkin~-Huxley model.

3. Application of a Sustained Constant Membrane Current
Applicataion ol a

Density

In order to adapt the reformulated model to a study
of the gross behavior observed in pacemaker cells, receptor
cells, etc.; or physically speaking, in order to apply a
sustained constant membrane current density IO to an active
part of the membrane, Lieberstein['?] found that he had only
to add Io to the new (H-H) excitation equation (2.9).
Equation (2.9) then becomes

d - -
I = CE% + gan(v - Vi) + gNam’h(v - Vya)

(2.11) _
+ %Q(v - Yl) + I,.

15



Carrying out the processes described in II.2 with the new

value for I, the singular perturbation equation attained is

- B e w5 ]
: gK[(g)Rn“ + (54 4n’gz_]\v - V)
. + g (2)roon + () (w02 + ) v - vy
e B (2Re - v (g)mo%

= Hl(v,n,m,h).

This equation (2.12) together with the equations (2.8) and
the initial conditions (2.10) make up the system and
initial values thot will be studied in this paper; i.e., we
shall consider the initial value problem

dv
at

Hl(v,n,m,h)

1
Il

8 - 5y (v,n) =« (WA -1n) - B (vn

dt
(2.13)
dm Hy(v,m) = ap(v)(1 = m) - B (V)m
4 - g, (v,h) = aq (V)@ - h) - B (VD
where
v(to) =v(0) =0
J(t) = J(0) = %(9) J = h
( 0o - - G.J(O) + BJ(O) ’ = T M :

16



Note: For a complete discussion and numerical Jjustification
of the physical basis for the assumptions in Sections II.2

and II.3, see [6, 7].

17



III. EXISTENCE AND UNIQUENESS
OF THE SOLUTIONS OF SYSTEM (2.13)

As stated in the Introduction, we wish to prove
existence and uniqueness of solutions to (2.13) for all
time greater than or equal to zero. To do this we need
boundedness of the solutions. Therefore, we will be able
for the present to establish only an existence and uniqueness

theorem which holds up to a possibly finite time b.

1. Preliminary Properties of the System

The goal of this precsent section is to prove that
H2, HB’ and H4 are each entire functions of the four real
variables v, n, m, and h and that Hl is analytic in the
region in which solutions are sought. Therefore we lirst
state some vproperties of the various functions of which

Hl’ H2, HB’ and H4 are comnosed.

Proposition 3%.1. s Oy O Bn, Bm, and Bh are entire

functions of v.

Proof.

Let

4 i
I — gxp(x) if x £ 0

f(x) =Z
1 if x = 0.

Tor x £ 0, since f is the guotient of two entire functions

and the denominsator is different from zero, we have that

18



f is analytic at every real x # O. It is well known Gthat
there is a neighborhood of zero such that f is represented
by a power series in x. In fact, the coefficients Bn in

the power series representing f (£f(x) = > an“/n!) are sim-
n=0

ply the Bernoulli numbers. The B/ (= £ (0)) have properties:

n-1
1 1 § n .
Bo=l; B1=—-"2", B2=€; (K)BK=Olfn=2’ 3,....
K=0
Also
B2n+l = O lf n = l, 2, 3, 4,0-..

A direct proof that f is analytic at zero follows from
considering g(x) = [—1 + exp(x)]/x which is represented

by the power series 1 + 5 x*/(n + 1)! that is absolutcly
n=1

convergent for every reel x. The proof is established by

using the following theorem: Theorem. If p(z) = E pnz“
n=0

for z € N(O3h) (neighborhood about zero of radius h) and
if p(0) # 0, then there exists a neighborhood N(0;6) in
which the reciprocal of p has the power series expansion

Q
of the form (1/p(z)) = §=oqnz . PFurthermore, q = (l/po).

(In our case p = g, (1/p) = f£.) Thus f is analytic at

every real number x. If we now define

(v + 10)

gl(v) = 10
and
82<V) - (v I 25)’

19



then since 8y and g5 are analytic at every real v, it
follows that the compositions

@, = £ e gl and Xy = £ o 85

are analytic at every real v and therefore

R S
%y = 10 %n

is analytic at every real v.

3ince 1 + explzv + 50)/10] is analytic at every real
v and is never zero, the reciprocal Bh is analytic at every
real v. Finally since exponential functions are analytic

at every real v, we have that Bn, B and o, are analytic

m?

at every real v. This completes the proof.

It now follows immediately that

o0, (v)(1 = n) - g (vIn
Ha(v,n,m,h) = am(v)(l -m) - Bm(v)m
Hq(v,n,m,h) = ah(v)(l - h) - Bh(v)h

1}

He(v,n,m,h)

are entire functions of the four variables v, n, m, and h;
i.e., they are analytic functions of the four real variables
v, n, m, and h at every point of four dimensional space.

We next show that the numerator and denominator of

H, are entire functions of v, n, m, and h. Let

1l
(5.1) K(v,n) = éK[<§>'Rn‘ + <§;L—C)@n3%rtl):l
and

(3.2)  Na(v,m,h) = érlal:(ég'L)Rmsh * (521'6>(5m2h%% * ‘fg%)]'

20



Since dn/dt = H2(v,n,m,h), dm/dt = HB(v,n,m,h), and
dh/dt = H4(v,n,m,h); it is clear that K and Na are entire
functions in their variables and it follows immediately
that the numerator of H1
-[K(v,n)(v - 12) + Na(v,m,h)(v + 115)

+ B, (2/8)R(v + 10.5989) + (2/a)RI_]
is entire, Furthermore the denominator

(3.4) (2/a)RC + (1/6°C)(ggn* + Bym'h + &)

of Hl’ being a polynomial in n, m, and h is an entire

(3.3)

function of n, m, and h and hence of v, n, m, and h,.
Therefore H1 will be analytic in any region in which the

denominator (3.4) is not zero.

Proposition 3.2. Let E be any region (open connected

set) in (v,n,m,h) space such that mh 2 O. Then the

denominator (3.4) of H, is greater than zero.

Proof. All terms in the expression are nonnegative
and (2/a)RC > O.
Remark 1.
(2/2)RC + (1/8°C)E, = (2/2)R(C + g, /K)
> 2974,7899(.001 + .0003/4,5108406)
> 2974.7899(.0010665064 )
>

3.17263246 .

2

2 In this paper strict inequalities are used in remarks
and proofs involving computations. The inequalities are
valid because they refer to truncation of real numbers.
Usual usage would require an equality sign because the
numbers are equal to the number of digits quoted.

21



Therefore the denominator (3.4) > 3.17263246 for all
v, n, m, and h such that mh Z O.

Remark 2. In any region where
> n(0) “n(0)
n n =
5_(0) + B_(0)

and
mh 2 O,
we have that (3.4) is greater than (2/a)Rd6 where

5 = .0011477816.

Proof.
2 1) /= - - 2 - -
(E)RC + (576)(gKn“ + gNam’h + gl)_; (§>RC + (6;6)(gKn‘ + gl)

> ( R[? + (%)(gKn‘(o) ¥ éz)}

(.0%6)(.010184565) + .0003 ]
R[’OOI * Ir. 5108406

(00036664434 + ,0003)
R['OOI + I, 5108406 '

A4

v

R(.001147787164«+.)

I ®I i P o

A4

]
e N e N e R )
e
s
(o

Remark 3. In Remark 2 above we used the inequality
n*(0) > .010184565.
In order to justify this inequality and also to become
familiar with the values of n(0), m(0), and h(0) we will
here give upper and lower bounds for each of the real

numbers n(0), m(0), and h(0). Recall from (2.10) that

22



a5 (0)
I0) = 5oy + B,(®

where J = n, m, or h. Letting J be n, m, and h successively,

and performing elementary operations, we have

m

n(0) = 775 exp(1)?
m(0) = I 85exp(2.5)’
and
h(0) = 7[1 + exp(3)]
7[1 + exp(Bﬂ + 100°

Using [ 10] we obtain the values

3176769141 < n(0) < 31767691411,

.0529324850 < m(0) < .0529324852,
and

.5961207534 < h(0) < .596120754.
The inequality n*(0) > .010184565 follows.

2. An Existence and Uniqueness Theorem

Let Io > 0 be given. ILet w = min {—115, v - (Io/éi)}’
TLet D =-{(v,n,m,h) | @<v<12,0<n<l1l,0<m<1, 0<h <:@

and D, = {(t,v,n,m,h) ] t arbitrary, (v,n,m,h) € DX.

Theorem 3.3. Let x_ € D, let H = (Hl,Hg,HB,H4),and

let x = (v,n,m,h). Then the system

d_%{ = H(X)

3 See footnote 2.
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has a unigue solution x(t) satisfying the initial condition

x(t,) = x, and defined on an interval t,S t <b (b=D)

o
such that, if b <, then x(t) approaches the boundary of D

as t approaches b.

Proof. We show that the system satisfies the hypotheses
of Theorem 10 [11, p. 122]. This theorem states: '"Let
X(x,t) be defined and of class C' in an open region R of
(x,t) space. For any point (c,a) in the region R, the
DE(2) [differential system dx/dt = X(x,t)] has a unique
solutiorn x(t) satisfying x( &) = ¢ and defined for an
interval 8 £ t < b (b £®) such tnat, if b <, either
x(t) approaches the boundary of the region or x(t) is

unbounded as t— b." Such a time interval is called a right

maximal interval of existence. First of all, Dg is open.

In D, by Proposition 3.2, the denominator of Hl is positive.
Therefore Hl is analytic in D. Hence H is analytic in Dt
and is thus certainly defined and of class C* in Dt' There-
fore by the theorem, dx/dt = H(x) has a unique solution
x(t) = (v(t),n(t),m(t),h(t)) satisfying x(to) = x_ and
defined on a right maximal interval of existence [to,b).
Since D is bounded, x(t) cannot be unbounded as t — b if
b<®M. Hence b =®or x approaches the boundary of D as t —b.
Remark 1. Since (v(0),n(0),m(0),h(0)) & D we have the
existence and uniqueness of system (2.13) from time t, = 0
up until the time that the solution approaches the boundary

of D.
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Remark 2. If we consider D, the closure of D, then
we have that the right maximal interval of existence is
either [t _,®) or is [to,b], if b <@, where x(b) € 3D
(the boundary of D). Therefore when we prove that
w< v(t) <12, 0 <n(t) €1, 0 <m(t) <1, and 0K h(t) <1
for any time interval in which the solution exists, we will
at the same time prove that a unique solution of (2.13)
exists for t € [0,00).

Remark 3. Since Hl’ H2, H5’ and H, are analytic
functions, the solution (v(t),n(t),m(t),h(t)) is composed
of analytic functions according to the theory of Ordinary
Differential Equations.

Remark 4, Trom the theory of Ordinary Differential
Equations (see [12, p. 15]) it follows that since
(0,n(0) ,m(0),h(0)) is in Dy (which is open) then the solution
(v(t) ,n(t) ,m(t) ,h(t)) of (2.13) may be continued to the
left of the initial value (0,n(0),m(0),h(0)). Therefore
the differential equations (2.13) are satisfied at the

initial value.
5. Properties of e P M Bn, Bm, and Bh

In later propositions, lemmas, and theorems we shall
need the following properties of x5 and BJ, where
J =n, m, or h,

Property 3.a. ® g > 0, BJ > O where J = n, m, or h.
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Proof. B Bm, and o, are positive since they are

n,
exponential functions. Consider

X .
f(x) _ -1 + exp(:a if x }é 0]

1 if x = 0O,
If x # O, then x > 0 implies exp(x) > 1 which implies
-1 + exp(x) > O and therefore f(x) > 0. If x = O, then
f(x) =1 > 0. Therefore f(x) > O for all x. It follows
that o, and o, are both greater than zero for all v. S3ince

exp[(v + 30)/10] > 0, it follows that
-3
_ v _+ 30
Bh = E_+ exp(——i6——)] > 0.
Property 3.b. xy + BJ > O where J = n, m, or h,

Proof. The proof follows from Property 3.a.

Property 3%.c. Xy & and Bh are strictly decreasing

m,
with respect to v. Bn, Bm, and o, are strictly increasing

with respect to v.

Proof. 8 Bm, and o, are exponential functions of

n?
v and are, of course, strictly increasing with respect to v.

Consider

x
-1 + exp(x) if x £ 0

' -1 + (1 = x)exp(x
O E i
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We claim that f£'(x) < 0. Let

g(x) = -1 + (1 - x)exp(x).
Then

g'(x) =-xexp(x).

Therefore, g is decreasing if x > O and is increasing if
x € O which implies that g has a maximum at x = 0. Now
g(0) = 0. Therefore g(x) < O for all x # 0. This implies
£'(x) = g(x)/[—l + exp(x)]2 < 0 for all x # 0. Now f'
exists and is continuous everywhere. Therefore

-1 + (1 - x)exp(x)

£'(0) [-1 + exp(x) ]~

lim
x = 0

. -X
S 2T ¢ exp(x)]

1

=T 2

by L'Hospital's rule, and we have f£'(x) < O for all x.

Now let
10
x = p(v) = Qxﬁﬁy—)-
Then
. .
o, = 35(f « P)

which implies

o' (V) = 52" (p(v)p' (v) = 755t ' (x) < o.

Let

alv) = (v_+ 25

X 10 .
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Then

which implies
a ' (v) = £'(q(via'(v) = -l%f'(}c) < 0.

Therefore o and o, are strictly decreasing with respect

to v. We now look at Bh.

Consider
_ 1
0 = T et
so that
£1(x) = —-exp(x) <0
[1 + exp(x)]° )
Let
x = s(v) = (X—§6§9>.
Then
Bh = f ¢ S

which implies
B, (v) = £'(s(v))s'(v) = 5£'(x) < O.

Therefore Bh is strictly decreasing with respect to v.

Property %.4. Oy Gmy Oy Bn’ and Bm are convex

(concave upward) functions of v. B, is convex if v > -30,

concave if v < -30, and has a point of inflection at v = -30.

Proof. Bn, Bm, and o, are exponential functions and

hence are convex. For o, and e ) consider
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flx) = 17 gxp(x) if x£0
1 if x = 0.
Then
ey exp(&)[(}f:l 2+) e;p((};)i 2)exp(x)] if x £ 0
z if x = O,
We claim that £"(x) > O for all x. Let
g(x) = (x + 2) + (x - 2)exp(x)
and let
k(x) = (x - Lexp(x).
Then
k'(x) = x exp(x)
which implies that k has a minimum at zero. Now k(0) = =1

and therefore k(x) 2 -1 for all x. This implies that

g'(x) = 1 + (x.- Dexp(x) = k(x) + 1 20
for all x. Also, g'(x) = O if and only if x = O. So g has
a point of inflection at x = O. Since g(0) = 0, we have
x > O implies g(x) > O, and x < O implies g(x) < O.
Therefore,

" g(x)exp(x
() = -1 + exp(x

is greater than zero if x # 0. ILet

e - pln) - (30

Then

o, = fa(f ° D)

which implies



" ____]_-__" 1 __l_u
o (v) = IOOf (X)p'(v) = 1660% (x) > o.
If
x = q(v) = L5253
then

" (1) (v) = 72=£"(x) > o.

[}
apt (v) 100

Therefore, o« and o, are convex functions with respect to v.

For Bh, consider

£f(x) =[1 + exp(x)J.l.

" _ -exE§x2‘l - e§ﬁ$xﬂ
(%) = 1l + exp(x

Therefore, the sign of £“(x) is the same as the sign of x.

Then

Let

Then
By (V) = 755" ()
which implies that the sign of Bﬁ is the same as the sign

of x. Hence Bh is convex if v > =30, is concave if v < =30,

and has a point of inflection if v = =30,

Property 3.e. Let S = [-115,121. Then
max (o, (v) + B (v)) = o (-115) + B_(-115)
vesS
Proof. By Property 3.d., a (v) > O and Bé’(v) > 0

for all v which implies that
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Ween _ N0 "
(am + Bm) (v) = o (v) + B (v) > o.
Therefore o, + B. is a convex function of v which implies
that if there is a ¥ such that (am + Bm)'(G) = 0, then there

is only one such ¥ and it is a minimum for oo, t Bm. Now
' 1l 2 2
(og + Bp) (=25) = _(56) + 4 exp(- Tg)') -.05 + (§)exp(—l.3889)

> .05 + (g)(.249)> -.05 + .055 > 0%

(o + By)' (-30) < & 1)[%16g%§58225§°§6) =11 ( (.1690264614)

= <'%1%k%825253? =1L, (%)('5580529228)

.009020401
.09209736403200356 + +05756143586667

< - .oogo§o401 . 03756144

-.09020401 + ,0%756144

< 0.
Therefore (am + B )'has a zero between -25 and -30 which

m

implies that
max (am + Bm)(v) = max-{(am + Bm)(—llS),(am + Bm)(12)}.

veS

Now
(o, + B,)(-115) > 9.0011107 + 0067183972 = 9.0078291342;

(am + Bm)(12) < .0937961 + 7.7911960 = 7.8849921.

4 See footnote 2.
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Therefore

max (o + Bm)(V)

nex 0, (-115) + B (~115)

< 9.0011108271 + .0067210854
9.0078%19125
< 9,00783%20.

Property 3.f. (ah + Bh)(v) < 1.07 for all v < O.

Proof. Since 0 < exp[(v + 50)/10] implies
1> (1 + exp[(v + 30)/10_'])-1 , we have B, (v) < 1. Since
v < O implies exp(v/20) < 1 and therefore .07 exp(v/20) < .07,
we have ah(v) < .07. Therefore ah(v) + Bh(v) < 1,07

for all v < O,

4. First Consequences of the Existence and Unigueness

Theorem

Now that we know that a solution to the initial wvalue
problem (2.13) exists for the region D in at least some
neighborhood of to = 0, we can prove four propositions
that give us a first glimpse at the behavior of the solutions.

Let (v(t),n(t),m(t),h(t)) be the solution to the
initial value problem (2.13) where t, = 0, v(to) = v(0) = 0,
and J(to) = aJ(O)/[ﬁJ(O) + BJ(O)] for J = n, m, or h,

Then we have:

I dn _ dm _ &b - 0-
Proposition 3.4. dt(O) = dt(0) = dt(o) = 0,
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Proposition 3.5. If Io = O, then %%(O) = 0, while

. dv .
if IO > 0, then'dt(o) < 0y

Proposition %.6. At t = O, the solutions n and m

are concave upward while h is concave downward for IO > 0.

Proof of Proposition 3.4. Tet J = n, m, or h. The

differential equations (2.8) are satisfied at to = 0

according to Remark 4 following Theorem 3.%. Therefore

2(0) = as;(v(0)) - [as(v(0)) + B;(v(0))]T(0).
By (2.10),

dJ o;(0)

35(0) = a;(0) ‘{["‘J(O> + B5(0)] %;(0) + [3J(o)}

a;(0) - a;(0)
= 0.

Proof of Proposition %.5. Let I 2 0. Then the

differential equation dv/dt = Hl(v,n,m,h) is satisfied
at t, = O according to Remark 4 following Theorem 3%.3.

Therefore, using (3.1) and (%.2), we have

-1
o) - _{[(g)m + gt (Bgn*(0) + By, m’ (0)h(0) + é};)] }
« 3 K(v(0),n(0)) (v(0) - vg)
+ Na(v(0),m(0),h(0))(v(0) - vy)

+ §£(§>R(V(O) - Yk) + (%)RI%}.

By Proposition 3.4

K(v(0),n(0)) = & (2)rn*(0)

a
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and

Na(v(0),m(0),h(0)) = &y, (2)rm* (0)n(0).

Therefore, by (2.10)
dr0) = -{[(%)RC + (§;6)<§Kn‘(o) + By, m (0)h(0) + 51>]_ }
. (%)R[éKn4(O)(-vK) + Byl (0)h(0) (~vy )

+ él(- l) + Io].

Now recall from II.1. that Vp was chosen so that

ggn' (0) (-vyp) + By m’ (0)h(0)(=vy,) + &, (=vy) = O.
This implies that

2Y(0) - -{[(g)ac + (555 ) (Bgn® () + By’ (O)B(O) g£>]'l}

2)
’ (a RI,e

. _ dv _ .
Therefore, if I = O, dt(O) = 0. If I > O, since
Proposition 3.2 implies that the denominator is positive,

av
we have dt(o) < 0.

Proof of Proposition 3.6, Let J = n, m, or h. Let

Io > 0. Then

L [ D - D - 8 WIHE - [a;0 + 80§

Proposition 3.4 and (2.10) imply that

£ - [a; @0 - 300 - 87 03] o
- [aJ(O) + BJ(oi]%%(o)
[“J'(o)(l - J(0)) - BJ'<O)J(0)J%‘E’(O).
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‘Now for J = n or m, Property 3.c implies that aJ'(v) < 0
and BJ'(V) > O for all vy for J = h, Property 3%.c implies
that aJ'(v) > 0 and BJ'(V) < O for all v. From Remark 3
following Proposition 3.2 we see that O < J(0) < 1 for
J = n, m, or h which implies O < 1 - J(0) < 1. Therefore
for J = n or m,

s’ (0)(1 - 3(0)) - B;'(0)3(0) < ©
and for J = h,

ag' (0)(1 - 3(0)) - B;' (0)3(0) > o.
Since IO > 0O, Proposition 3.5 says that %%(O) < 0. Combining
these results we have that for J = n or m, %%g(o) > 0,

2
for J = h, fw_‘l(o) < 0. This result gives us the conclusion.

Remark 1. These three propositions say that for IO > 0
the solution v(t) starts out strictly decreasing (from the
initial point to = 0), and hence is negative for some
positive time interval (O,tl); the solutions n(t) and
m(t) are strictly increasing for some time intervals (O,tg)
and (O’tB) respectively; and h(t) is strictly decreasing
for some time interval (O,tq) where tl’ t2, t3’ and t4 are
greater than zero. Also n(t) > n(0), m(t) > m(0), and
h(t) € h(0) for some time interval (O,t5) where t5 > 0.

Remark 2. It could also be shown that there exists
a t6'> 0 such that m’h is strictly increasing for all
t e (O,t6), and that (m*h)'(0) = O.

Remark 3. If we call a point x = (v,n,m,h) such that

35



Hk(v,n,m,h) =0 fork =1, 2, 3, 4

a stationary point5 of the system

d
5% = H(x)

where H = (Hl,H2,H3,H4), then Proposition 3.4 and
Proposition 3.5 show that (0,n(0),m(0),h(0)) is a stationary
point for the system (2.1%3) if and only if I0 = 0. Further-
more, for I = O, the unique solution to system (2.13) is,

for any time ¥,

v(t) = 0

n(t) = n(0)
m(t) = m(0)
h(t) = h(0) .

Proposition 3.7. Let I, > 0. Let (v(t) ,n(t) ,m(t),h(t))

be the solution of (2.13) in D, and let [0,b] be the right

maximal interval of existence gf the solution. Then the

zeros of the functions v'y n', m', and h' are isolated

in [0,b].

Proof. According to Remark 3 following Proposition 3.3,
v, n, m, and h are analytic functions of t. Therefore
the first derivatives v', n', m', and h' are analytic
functions of t in [O,b]. Now if a function f is analytic

(real or complex) on an open region S, if f(zo) = 0 for

5 The terms singular point and critical point are
also used to describe such a value.
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some z_ € S, and if £ is not identically zero on'any
neighborhood of Z then there is a deleted neighborhood
N'(zo) C S on which f does not assume the value zero.
Furthermore, a function f analytic on 3 cannot be zero on
any non-empty open subset of S without being identically
zero throughout S. By hypothesis Io > 0. Therefore, by
Proposition 3.5 and Proposition 3.6, there is a neighborhood
of zero in which the functions v, n, m, and h are non-
constant which implies that v', n', m', and h' cannot be
identically zero throughout (0O,b). Since each is analytic
on (0,b), it follows that none of v', n', m', or h' can

be zero on any non-empty open subset of (0,b). So for any
time t, such that any one of vi,n', m', or h' is zero,

we have that there exists a deleted neighborhood N'(tl)

in which that function is different from zero. Thus the

zeros of v', n', m', and h' are isolated on (0O,b) and

therefore on [O,b].

Remark 1. Proposition 3.7 says thet none of the
functions v, n, m, or h can become constant on any open
subinterval of [0,b]. Therefore any time t; & [0,b ] that
v', n', m', or h' is zero can be at most a relative maximum,
relative minimum, or stationary inflection point of v, n,

m, or h respectively.
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IV. BOUNDEDNESS

We shall prove here the boundedness of the solutions
(v(£),n(t) ,m(t) ,h(t)) of (2.13). After a preliminary
section in which three new functions are introduced, it
will be shown that the solutions n, m, and h are bounded.
We shall then show that the solution v is bounded for any
given fixed Io > 0. A theorem numbered 4.11 will prove
lower boundedness and a theorem numbered 4.13 will prove
upper boundedness. These results are significant since
they prove, among other things, that the initial value
problem (2.1%3) cannot have the unbounded difficulties
(mentioned in the Introduction) that the solutions of the
original Hodgkin-Huxley egquations appeared to have.
Theorem 4.13%3 will provide an upper bound of twelve for v
which is the best possible upper bound that the method of
proof used in the theorem can provide. The numerical
evidence in [7] also indicates that twelve is a good upper
bound for v. However, such is not the case for the lower
bound given by Theorem 4.11 for large wvalues of IO. The
numerical evidence indicates that -115 mv is a lower bound
for v for all I_ £ 500 tA/cm® (The case run for I, = 600 nA/cm®
yielded a lower bound of v = -116.5 mv. No cases were run
between I_ = 500 nA/cm?® and I, = 600 wA/cm®.). Even a
value for IO of 4120.8 pA/cm® produced numerically a lower

bound for v of -167 mv. However, the lower bound for
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IO = 500 pA/cm’® given by Theorem 4.11 is approximately
v = =1680 mv, so that the usefulness of Theorem 4.11 for
large I (Io 2 80 pA/cm®) will be in showing existence of
a lower bound, not in finding the value of a lower bound,
such a value could be a major consideration for cells that.
have a plateau type behavior, but Theorem 4.11 will not
provide it.

Since for the threshold phenomenon and the phenomena
of revetitive firings the relevant values of IO indicated
by the numerical evidence [7, Part II] are betwcen O pA/cm®
and 7 uA/cmz, we present ndditional theorems which provide
a lower bound for v of -115 mv for all such Io' Corollary #+.12,
using the method of proof of Theorem 4,11 establishes a
lower bound for v of -115 mv for O £ IO £ 31 uA/em® whereas
Theorem #4.25 using a completely different method, will
establish a lower bound for v of ~115 mv for O £ I £ 72ubk/cen’
in the first time interval in which the voltage v is
negative. Actually, Theorem 4.25 yields a curve u(t) which
passes through the initial value v(0) = O, which is
bounded below by -115, and which has the property that
u(t) € v(t) for 2ll times t in the first time interval in
which v < O.

The following notations consistent with thosec used in
II and IITI, will be used throughout IV: for IO given, let
w = min{-115, v, - (Io/él)}; let D = { (v,n,m,h)| w < v < 12,

0<J <1 where d = n, m, or h}; let D be the closure of Dg
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and let [O,b] be the right maximal interval of existence
of solutions (v(t),n(t),m(t),h(t)) of (2.13) correéponding
to D, Finally, let d denote the first positive time that
the solution v equals either <115 or O unless v is neither

-115 or O for any positive time; let d =m in that case.

1. The Functions v, u, and 7

We now introduce the functions v, u, and n which will
play a primary role in the study of the solutions
(v(£),n(t),m(t),h(t)) of (2.13). These three functions
are connected with the solution v(t) in such a way
that the curve (v(t),u(t),u(t),n(t)) determines to a
large extent the behavior of the solution (v(t),n(t),m(t),h(t)).
In this section we state some of the properties of these

functions.

Definition. Let (v(t),n(t),m(t),h(t)) be the

solution of (2.13) in [0,b]. Define v:[0,5] —R',

1l 1

p: [0,0) —R7, and n:[0,b] —R" by

Vo= o v/ (oo v+ Be v],

no= aﬁ>v/[am°v + B v],
and

n = Cx,h°V/[ah°v + Bho V]o

The domain of Vv, u, and n equals the domain of v equals

{0,b] since by Property 3.b the denominators of the functions
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v, 4, and n are greater than zero for all v.

Note. If v were a constant function, then v, u,
and n would be the same as ng, My, and hy resnectively,

which were used by Hodgkin and Huxley in [5].

Proposition #.1, Let t € [0,b]. Let Q=V, I, or M

and let J = n, m, or h in the same order; i.e., =V

if and only if J = n, Q = u if and only if J = m, and

Q = N if and only %f J = h, Then

(1) §5(£) > 0 if and only if (%) » J();
(i1) $9(+) = 0 if and only if p(t) = J(%);
(111) $(+) < 0 if and only if pe) < 3w,

Proof. By definition of dJ/dt,
aJ
afb(t) >0
if and only if
az(v(EN[1 - J(8)] - Bz(v(£))I(E) > ©O

if and only if
o (v(8)) = [ay(v(8)) + By(v(£))]a(t) > O

if and only if
(s (v (6))/ [y (v(6)) + By(v(£))]) > (8
by Property 3.b. Therefore by definition of Q

%%(t) > 0 if and only if Q(t) > J(8).

41



Thus (i) is proved; (ii) and (iii) can be proved similarly

by usins the appropriate signs.

Proposition 4.2. Let J = n, m, or h. Define the

function £ :R*— R by

£5(v) = az(v)/[az(v) + B;(¥)].
Then f£1(v) < O for all v if J = n or m3 if J = h, then

£3(v) > 0 for all v.

Proof. fJ is an entire function of v by Proposition 3,1

and Property 3%.b. Therefore fi exists and is continuous.

ey + Bay = aglay + By) By = osBy
Ty = (aJ + BJ)2 = (o o+ BJT‘r .

Let J = n or m. Then by Property 3.a and Property 3.c,

BJ > 0 and a} < 0. Also s > 0 and B& > 0. These results

. | A . v _ L el

imply BJaJ < 0 and aJBJ > 0. Hence BJaJ G Ly < 0.

Let J = h. Then by Property %.a and Property 3.c, Bh > 0,
a! >0, o > O, and Bﬁ < 0. Therefore B’ > O and

ahﬁﬁ < 0 which imply Byoy - oBy > O. Thus, for J = n or m,
f&(v) < O for all vy for J = h, f&(v) > O for all v.

Proposition 4.3,

(1) v is increasing if and only if V is decreasing

if and only if u is decreasing if and only if 7 is

increasing,

(ii) v is decreasing if and only if V is increasing

if and only if p is increasing if and only if n is decreasing;

42



(iii) v is at a relative maximum if and only if v

is at a relative minimum if and only if u is at a

relative minimum if and only if n is at a relative maximum:

(iv) v is at a relative minimum if and only if v is

at a relative maxinum if and only if n is at a relative

maximum if and only if nm is at a relative minimum,

(v) None of the four functions v,V, u, or n can

have a stationary igfigqﬁion point at any time t*without

the other three having a stationary inflection point at "

Proof. We have V = f ev, u = fmcv, and 1 = fhov.

n
Therefore

V(%) = £l(v (t)) +(8),

n'(6) = £AvNF(E),
and

1'(t) = £(v (t)> (t)

(i), (ii), (iii), and (iv) now follow from Proposition 4.2,

(v) follows from

Vi) = i ve(H®) T+ i venNTFE @,
W) = (o)) () + v,
n''(6) = £ (v <t>>( <t>) v 2 (vONEFe),

and (i), (ii), and (iii).

Remark. It can be seen from the proof that "strictly"
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may be inserted into the hypotheses if desired.

Proposition 4.4, If t* > 0 is such that v(t") < v(%)

for all t ¢ [0,t*), then for all t ¢ [0,t*) we have
V(™) > v,
n(t®) > u(v),

and

n(t*) < n(v).

Proof. Let t € [0,t*). Now v(t*) < v(t). Therefore,
by Proposition 4.2, since fn and fm are strictly decreasing

and f, is strictly increasing, we have fn(v(t*\) > fn(v(t)),

h
fm(v(t*)) > £ (v(%)), and fh(v(t*)) < £, (v(%)). This

implies V(t*) > V%), n(t®) > n(t), and n(t*) < n(t).

Remark. Dual results (inequalities reversed) also
hold by the same arguments. Also, if the inequalities

are replaced by equations, the proposition holds.

Proposition #.5. Let tl’t2 € [O,b] such that

v(tl) < v(t2). Then
‘U(tl) >.V(t2)’

u(tl) > u(t2)9
and

n(ty) < n(t5) .

Proof. The proof is the same as the proof of

Proposition &4.4.
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In order to illustrate the utility of v, u, and n
we prove two simple propositions which concern the

relationship between v and n, m, or h.

Proposition 4.6. If n is nondecreasing (nonincreasing)

in some interval [tl,t2] and has a stationary point at

’c3 £ (tl’tg)’ then either v has a stationary inflection

point at t3 or a relative maximum (minimum) at ¢

50

Proof. If n is nondecreasing (nonincreasing) in

dn dn
[tl,t2], then g(t) 2 0 (g5(t) £ 0) for all t e [t;,t,]
which implies by Proposition 4,1 that n(t) £ V(t)
(n(t) 2 V(t)) for all t ¢ [tl,tgj. If n has a stationary
V(tz) by

Proposition 4.,l1. Also it follows that n has an inflection

point at some t5 € (tl,t2), then n(ta)

point at t3' These results together imnly thet V has
either a relative minimum (maximum) at t5 or a stationary
inflection point at t3. If V has a stationary inflection
point at t3 then V is nondecreasing (nonincreasing) at t3'
By Proposition 4.3 v therefore has either a relative
maximum (minimum) at t3 or a stationary inflection point

at t5.
Remark. The same type of results hold for m and h.

Proposition 4.7. Let [al,a2] be any interval in

—

which the function v is nonincreasing and for which

B(ay) 2 0, $E(ay) 2 0, and P(a)) £ 0. Then L) 2 o,
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dm
aE(t) 2 0, dnd (t) £ 0 for all t ¢ [al,ae].

Proof. We show 3%(t) 2 0 for all t & [a,a,].
Now v is nonincreasing on fal,agl, so %%(t) S 0 for all
t e [al,az]. This implies by Proposition 4.3 that
g%(t) 2 0 for all t ¢ fal,ag]. Now m is a continuous
function and is nondecreasing at aq . Therefore if we
assume that %%(%) < 0 at some T ¢ (al,a2], then there
exists a t' € (al,%) such that gy-l('t') = 0 where m(t') > m(%).
Now %B(t) 2 0 for all t ¢ [&1’32] implies u(t') < u(®).

But ——(t ) = O which implies m(t') = u(t') (Proposition 4.1).
Therefore m(%) < m(t') = u(t') £ u(¥®) implying dt(t) >0
(Proposition #4.1) which is a contradiction. Therefore

gg(t) 2 0 for all t € [al,a2]. Similar results hold

for n and h,

Remark. The dual result (inequalities reversed)

also holds by the same arguments.,

2, Boundedness of n, m, and h

The theorem and proof to be presented in this
section are similar to the statement and proof of Lemma 1
in (8, p.157J. Since the system of differential equations

here is different from that in [81 , the proof is given.

Theorem 4,8, Let (v(t),n(t),m(t),h(t)) denote the

solution of (2.13) corresponding to D. Then for all

46




t € [0,b] we have
0 < n(t) <1,
0 < m(t) <1,
and

0 < h(t) < 1.

Proof. Let J = n, m, or h. Suppose there exists
a time t € (0,b] such that J(t) = 0. Since J(0) > O
and any solution J is continuous, there must be a first
such time. Call it t*. Then J(t*) = O and J(t) > O for

all t € [0,t®). TNow

AT e

0 ag(v(E*) (1 = T(E*) = By(v(£M)II(E™

aJ(v(t-)).

Since ay > O by I'roperty 3.a, we have %%(t*) > 0.

Therefore, J is strictly increasing at t* which implies
that there exists a neighborhood N of t™ such that if

t e N0 (0,8*), then J(t) < J(t*) = O. This contradicts
the fact that J(t) > O for all t € [0,t*). Therefore,
for all t € [O,b] we nave J(t) > O where J = n, m, or h,

Now suppose that there exists a time t & (0,b]

such that J(t) = 1. Since J(0) € 1 and any solution J
is continuous, there must be a first such time. Call

it t". Then J(t*) = 1 and J(%) < 1 for all %t e [0,t%).

Now

W (b*) = a (v(EMIA = T(E®) = By(v(E*NI(E™

- B (v(t™)).
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Since by Property 3.a we have BJ > 0, it follows that

3 (+*) < 0 which implies that J is strictly decreasing
at t*. This implies that there exists a neighborhood N
of t* such that if t € N (0,t*) then J(t) » J(t* =1
contradicting the fact that J(t) < 1 for all t & [0,t%).
Therefore, for all t £ [0,b] we have J(t) < 1 where

J =n, m, or h.

Remark 1. Note that it follows from the definitions
of vV, u, and n that for all t € [0,b]
0 <v(t) <1,
0 < u(t) <1,
and

0 < n(t) < 1.

Remark 2. Since oj and B; (where J = n, m, or h)
are analytic functions of v for all v, if v is bounded
then so are oy and’BJ. If v is a given bounded function,
then the three equations dn/dt = H2(v,n), dm/dt = H3(v,m),
and dh/dt = H4(v,h) become linear equations and solutions
will exist for all time if the given bounded region is
sufficiently large to include v for all time. Using
Theorem 4.8 and D, we can now extend the results of
Theorem 3.3 to the statement: the solution x(t) exists
and is unique on an interval to £t £b (b g ®m) such that

if b < ®, then lim x(t) = (w,n(b),m(b),h(b)) or
t-b
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lim x(t) = (12,n(b),m(b),h(b)). In order to make a
t-+b

further extension we must show that v is bounded. This

we do next.

3. Lower Boundedness of v

Lemma 4,9, Let I, > O. Then for any t* ¢ (0,b]

such that v(t*) < v(t) for all t £ [0,t*) we have

d
a%(t*) 2 0, dt(t ) 2 0, and aE(t*)

Proof. ILet t* € (0,b] be such that v(t*) < v(t) for

all t € [0,t*). Such a t* exists by Proposition 3.5 and
Remark 1 following Proposition %.5. By Proposition 4.4,
v(t*) > v(t) for all t € [0,t*). We claim that n(t*) £ V(t9®.
Assume that this is not the case; i.e., assume n(t* > V(t?).
Then by Proposition 4.1 (iii), %%(t*) € 0 so n is strictly
decreasing at t*. Now since V and n are both continuous,
since n(t*) > V(t*) > v(0) (by Proposition 4.5), since

V(0) = n(0) by definition of V and n(0), and, since near

t = 0% we have %% > 0 (Proposition 3.6 and Remark 1
following), there exists a t* e (0,t*) such thet gn(tv 0
where n(t** ) > n(t*). But %%(t") = 0 implies n(t**)= V(t**)
by Proposition 4.1 (ii). Therefore V(t*") > n(t*) > W(t*).
This contradicts the fact that V(t*) > U(t) for all

t ¢ [0,t*). Therefore, n(t*) € V(t*) which implies by
Proposition 4.1 that dt(f ) 2 0, Similar arguments imply

Ef(t.) O and ——(t‘)
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Remark 1. The dual result for all three functions
n, m, and h (with the inequalities reversed) can also be
proved similarly if it is assumed that there exists
t ¢ (0,b] such that v(%) > 0.

Remark 2., If it is assumed, in addition to the
hypotheses of Lemma 4.9, that v is strictly decreasing at
t* then the conclusion can be changed to %%(t*) > 0,
dms*) > 0, ana P(s*) < o.

Proposition 4.10. Let (v(t),n(t),m(t),h(t)) be the

solution of (2.13). Then for any t* > O such that
(i) v(t") < 0O
and
(ii) v(t*) < v(t) for all t & [0,t*),
we have K(v(+*),n(t*)) > 0 and Na(v(t*),m(t*),h(t*)) > O.

Note. For definitions of the functions K and Na,

see (3.1) and (3.2).

Proof. Let t* > O satisfy (i) and (ii). Such a t*

exists by Remark 1 following Proposition %.6. By
Property 3.f, ah(v) + Bh(v) < 1.07 for all v < O.
This implies
K - (o (v) + B(¥)) > 0 for all v < O.
Therefore,
0 < [R - (ay(v(£") + B (v(+*)N]n(t")
<R - (o (v(£%)) + B(v(£)NIR(E*) + op (v(t™)

= Rn(t*) + %%(t').
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Hence
0 < (})Eya (2)rm (sm[Ruce™ + Been].
From Lemma 4.9 we have —@(t*) 2 0. This implies
0 < (#)&y, (&) (t*)[Kh(t*) e demy ]

+ (

= éNa{
+< )Em (t'ﬁﬂt*) (t*) +rn(t*) (t*)J%

= Na(v(t*),m(+*),h(t*)).

i“

JEwa3m (6HR(EHTRE™)

570
g)Rm’(t*)h(t*)

For the proof that K(v(t*) ,n(t*)) > 0, Lemma #.9

implies that %%(t*) 2 0. Therefore
2
0 < gy Rn*(t™®)

gK[(a)Rn (t*) + (61 )4n (t*) (t*)]
= K(v(t™) ,n(t")).

nA

Theorem 4.11. ILet IO > O be given. Let

o = min{-115, v - (I/E)f. Let (v(t),n(t),m(t),n(t)) be

the solution of the initial value problem (2.13) in the
region D. Then v(t) > W for all t ¢ [0,b].

Proof. Suppose there is a time t such that v(t) =
Then since v(0) = 0 and v is continuous, there must be a
first such time. Call it t*. Therefore,

v(t*) = w, and v(t) > @ for all t € [0,t").
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Thus

v(t*) < v(t) for all t £ [0,t%).
Therefore, from Proposition 4.10 we have K(v(t*),n(t*)) > O
and Na(v(t®),m(t*), h(t*)) > 0. Since

v(t*) - Vg = W= vy
£ =115 - 12
= =127
< 0,
we have
K(v(t*) ,n(t*)) [v(t*) - vK] < 0.
Since
v(t") - vy, =0 - vy,
£ -115 + 115
= 0,
we have
Na(v(t*) ,m(t%),h(t*)) [v(t*) - vy ] £o.
Also,

v(t*) - VW Tw =Y
-115 + 10,5989
< 0

A

which implies
(§>R§ (v(t*) - v,) < 0.
a4/, "L L
Putting these terms together we have, since the

denominator of Hl(v,n,m,h) is greater than zero

(Proposition 3.2);
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-1
50 - - [@ + (@Bt + g omees - 5] )
- R im0 [6Y = v ]
+ Na(v(s%),m(6%),h (6N [v(+®) - vy, ]

B @R ) - (B

> - {h@)Rc + (ghe) (Ben (8 + By’ (6MR(E™) « gx)] l}
- (B)r[E (vt -y v 1]

Now v(t®) = @ £ Yy - (Io/ék) by hypothesis. Therefore

él(v(t*) - Yz) +I,£0

which implies %%(t*) > 0. Thus we have shown that if

there is a time such that v = @, then v must be strictly

increasing at the first such time t*. However, v(t) > W

for all t € [0,t*) which implies that v must be

nonincreasing at t*. Therefore, the assumption must be

false and we conclude that there is no time such that

v =®. Since v is continuous and v(0) = 0, we have

v(t) > @ for all t € [O,b].

Corollary 4.12. Iet O < I < 31.320%3 pA/cm® .
Then v(t) > -115 for all t £ [O,bl.

Proof. O < I_ < 31.32033 pA/cm® implies
0 < Io < ,0313203% mA/cm® which makes the units

consistent. Then

_ = _ .05152055) _ _
v, =(I,/8,) > v ( 5665~ ) = vy - 104.4011

= - (10,5989 + 104.4011) = =115,
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Therefore W = ~115 and the conclusion follows from

Theorem 4,11.

Remark 1. It is crucial %o the proof of Theorem 4,11
that the lower bound be less than or equal to -115.
Otherwise the proof would not work since if v > =115,
the inequality involving the dropping of the sodium term
Na.(v + 115) would go the wrong way. In this sense -115
is the best available lower bound for v.

Remark 2. The 31.%2033 uA/cm® of Corollary 4.12 is
not necessarily the largest IO which gives a lower bound
of =115 mv for v. The wvalue of IO could be increased
in this proof if it were desired, by neglecting fewer
terms than we did. However, since these other terms
involve wvalues of n, m, and h, we would have to restrict
the time interval involved. Instead of doing that here,
we will wait until Section IV.5 where a lower bound of
=115 mv for v will be proved that holds for larger
values of I0 in the time interval in which a first

threshold appears.

4, Upper Boundedness of v

Theorem 4#.13. Let I > O. Let (v(t),n(t),m(t),h(t))

be the solutibnlgf the initial value problem (2.13) in

the region D. Assume that for any time interval (t;,t,]

in which v 2 O, there is some v* ¢ (0,12) with the

54



property that for any t e [t,,t5] such that v(t) z v*

we have m(t) £ m(0). Then v(t) < 12 for all t ¢ [O,b].

Proof. Suppose that v(t) = 12 for some t € [O,b].
Then v continuous and v(0) = O imply that there is a
first such time. Call it t*. Then v(t*) = 12 and
v(t) < 12 for all t £ [0,t*). The function v being
continuous and %%(O) < O (Proposition 3.5) imply that

there exists a t, > 0 such that for all t € [tl,t'] we

1
have v(t) 2 0. Now by hypothesis there is a v¥*e (0,12)

such that t ¢ [tl,t'] and v(t) 2 v* imply m(t) £ m(0O).

Therefore
(4.1) m(t*) £ m(0).
We now claim that

(+.2) Na(v(t*) ,m(+t*),h(t™)) > -.15.
Na(v(+*),m(t*),h(t%)) = éNa{(-ﬁ)Rm%t*)h(t*)
+ () o (eonen e
+ m (tM 5 (t*)]}
(4.3) > By 57g) [Fre™) + 38w (6905

since R = (g)Rezc and $8(t*) 2 0 by Remark 1 following
Lemma 4.,9. Now
Rm(t*) + 352(+*) = 3o, (v(t*))

+ m(t*){f - 3o (v(£*)) + Bm(V(t*))]g
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which implies
30, (12) + m(t*){ﬁ - 3[a (12) + em(laiﬁ' 6
> 3a (12) + m($*)(4.51 - 23.66)
3a(12) - m(t*)(19.15)
> .28 = 19.15m(t*)
(4.4) > ,28 - 19.15m(0)

Rm(6*) + 350(+™)

since by (4.1) m(t*) € m(0). Combining (4.3) and (4.4)
we have

Na(v(t*) ,m(t*) ,h(t"))
> By (gFo)n* (890" [.28 - 19.15m(0)]  ©

> (120) (gr) o* (¢"n(t*) [.28 - 19.15(.053)]

v

(120)(.28 - 1.02)(gr) m* (t®)h(t*)

(120) (-.74) (@) o (£*)B(t*)
> (120)(-.74)(1/€* )m® (O)n(t*) (4.5)
by (4.1) and Proposition 4.l1. Continuing, since
(1/8%*) < ,6595, since m(0) < ,052932486 implies
m? (0) < ,0028018481, and since n(t%) < .89619325 we have
by (4.5)
Na(v(t*) ,m(t*) ,h(t*))
> (120)(-.74)(.6595) (,0028018481) (.89619325)
> (.6595)(~120) (.74)(.0025109974)
= (.6595)(~120)(.001858138076)

6

& See footnote 2.
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> (.6595)(-120)(.0018581381)
= = (.6595)(.2229765720)

> - (.6595)(.22297658)

= =.147053054510

> -,15.,

Since
K(v(*),n(+")) (v(t*) - v} = K(v($*),n(t*)) (12 - 12)

0,

we have
e - -8+ (ol » g wmeen - 5)] ]
. {Na<v<t*>,m<t*),h(t*>>(V<t‘> - Vya)
+ gﬂ(g)R(v(t') - Vi) +<§)RI0 }

< - [(g)m + (gzL@XéKn‘(t') b By (EDR(EY + gx)]-l}
-1 (=.15)(127) + (%)R(.OOOB)(22.5989)] .

Now (%)R > 2974.7899 which implies

<§)R(.OOOB)(22.5989) > 20.16 .

Also (=-.15)(127) = =19.05. Therefore

-1
%%(t*) < -{[(%)RC + G#%ﬁ(éKn4(t*) + Byl (EM)h(t%) + é&)] }
« (-19.05 + 20.16)
< o.
But since v(0) = O and t* is the first time that v = 12,
we must have JL(t*) 2 0. This contradiction establishes

the conclusiong i.e., v(t) < 12 for all t € [0,b].
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Some remarks should perhaps be made regarding the
assumption in the last theorem. The inclusion of the

derivative of m’h in the sodium terms
Na(v,m,h) = éNa[(é)Rm’h + (ééa)(m’hfj

presents the mathematical possibility that the derivative
of m>h is a large negative number in any region in which

the voltage v is positive (called the refractory period).

Also, unlike the potassium terms,

k() = B (2)Rat + (gg) '],

where even a rough calculation shows that

)zt > ()=
the best estimate made on the size of (m’h)' allowed the
possibility that (2/a)Rm’h might be much smaller than
(-1/8?C)(m*h)' during any refractory period. If it were

the case that '@L%%Ql is very large in some refractory
period, then the methods employed to prove upper boundedness
for v in Theorem 4.13 would no longer apply. However, in
nature the various conductances return to the normal

levels (those where n is near n(0), m is near m(0), and

h is near h(0)) during any refractory period. In [4, p. 505]
Hodgkin and Huxley make the statement: " A membrane in the
refractory or inactive condition resembles one in the

resting state in having a low sodium conductance.'" In

[5, p. 530] when discussing the manner in which the
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various conductances affect the change of total conductance
in their model, they state: " ...but after the peak [of the
total conductance] the potassium conductance takes a
progressively larger share until, by the beginning of the
positive phase Lof the voltage], the sodium conductance
has become negligible." On page 532, when discussing the
refractory period and speaking about the behavior of
8k (gK = éKn‘) and h, they state: " Both curves reach
their normal levels again near the end of the positive
phase...." For our case the model is different, but since
the numerical solution for v(t) closely follows the H-H
solution for v(t) and since the equations for dn/dt,
dm/dt, and dh/dt depend explicitly only on v, n, m, and h,
and are the equations that Hodgkin and Huxley used, their
statements above should rcmain true.

If m is to reach its normal level in any region in
which the voltage is positive, it is necessary for m to
be near m(0) and also for the first derivative of m to
become positive. SBince when v enters its positive phase
(the first time) we have dm/dt <€ O, m must cross the
curve . in order for dm/dt to become positive. Now v
positive implies that u(t) < u(0) = m(0), so m would,in
its descent, have to attain the value m(0). Furthermore,
in the proposition below it will be shown that: TFor any
t such that v(t) > 0, either m(t) < m(0) or %%(t) < 0,

We assumed slightly more, namely that there is a value v*
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of voltage (v* e (0,12)) in each refractory period such

that any time t that v(t) > v* we definitely have m(t) < m(0).
This hypothesis could be weakened if it could be shown,

as the numerical evidence suggsests, that v has no non-
negative minima. Then it would suffice to assume that

in any refractory period there is a value v* of voltage

(v* £ (0,12)) such that if there is some time t such

that v(t) = v*, then m(t) = m(0). Since the empirical
evidence also strongly suggests that v has no nonnegative
minima, one may regard our assumption as a part of the

model to be addended to (2.13).

Proposition 4.14. For any t such that v(t) > O

we have either m(t) < m(0) or %%(t) < 0.

Proof. Let t be such that v(t) > O, Then
v(t) > 0 = v(0) implies n(t) < u(0) = m(0) by
Proposition 4.5, If m(t) < m(O), we are done; if not,
n(0) > u(t).

Therefore, by Proposition 4.1 (iii), %%(t) < 0.

then m(t) 2 m(0) implies m(t) 2 m(0)

Remark, Similar results hold for n and h but are

not relevant to the discussion above.

In order to substantiate further the assumption of
Theorem 4.13%, the initial wvalue problem (2.13) was solved
numerically using the IBM 1130 digital computer at Wichita

State University. (This and other numerical work will
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be discussed
obtained for
the assumptio
although for
behavior, the

Table 1
of the cases
do not. The
each case is
interval for

intervals are

TABLE 1. Num

in VI and VII.) Numerical solutions were
various values of IO. In every case run
n of Theorem 4.1% was found to be satisfied

cases with large I approaching plateau

o?
assumption was vacuously satisfied (see VI,1).

gives the approximate values of v* for some

which appear in [7] along with others which

number of refractory periods listed in

the total number which appeared in the time

which the equations were solved. These time

also listed.

erical Substantiation of the Assumption

of Theorem #4.13%

I, vt (mv) Time
(nA/cm?® ) Refractory Period In?;g;al
77777 | 1st 2nd %rd “4th

2.27 .48 100
2,28 8.7 100
2.879 8.7 10.5
5.97 8.5 .48 100
5.98 8.5 8.2 100
6.22 8.5 8.2 25
6.2% 8.5 8.2 8.2 8.2 (4th through 7th) 200
7.0 8.5 8.2 8.2 8.2 (4th through 12th)| 200
10. 8.2 7.9 7.9 7.9 (4th through 7th) 100
50. 4,8 3,4 3.1 3.0 (4th through 12th) 100
so. |17 100
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5. A Second Proof of the Lower Boundedness of v

Before we discuss the results of these three
boundedness theorems, we wish to present a second proof
of lower boundedness, The method of proof to be presented
represents a different approach to understanding the
nature of the solutions to the system. It involves an
extension of an elementary comparison theorem for first
order ordinary differential equations. The following

elementary comvarison theorem and lemma are found in [11].

Lemma 4,15 ([11, p. 20]). ILet o be a differentiable

function satisfying the differential inequality

o'(x) £ Ko(x) where a = x £ b, K is a constant. Then

a(x) £ a(a)explk(x - a)] for a 2 x ¢ b.

Theorem 4,16 ([11, p. 22]). Let F satisfy a

Lipschitz condition for x 2 a. If the function f

satisfies the differential inequality f£'(x) £ F(x,f(x))

for x 2 a, and if g is a solution of y' = F(x,y)

satisfying the initial condition g(a) = f(a), then

f(x) £ g(x) for x 2 a.

We shall extend this theorem to a system of first

order differential equations in the following way:

Theorem 4,17. Let E be a region (open connected

set) of x-space where x = (xl,xz,---,xn). Let Et denote
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the set of all (t,x) such that t e [t ,b ) 2nd x ¢ E

where b > t_ . Let F = (FI’FE""’Fn) be defined on

E, and satisfy a Lipschitz condition (with respect to x)

on E.. ILet g = (gl,g2,~--,gn) be a solution of the

vector differential equation %% = F(t,x) satisfying the
e - o o o
initial condition g(to) = 8, = (gl,gg,---,gn) e EB.

Let [to,b]) be the right maximal interval of existence

of g. Finally, suppose that the function £ = (fl,fz,.--,fn)

satisfies:
£1(8) £ Fy(5,£(8)) for t e Lt,2D.) s
fp =85,
fI’l = gna

and the initial c¢onditirn fl(to) = g?. Then fl(t> -y gq(t)

for t ¢ [to,tl) where tl = min{ﬁo, bl}.

Proof. Suppose not; i.e., suppose there exists a

t, € [to,tl) such that f,(t5) > g (t,). Note that t, > t_

. o . * -
since fl(to) S gy. Let S be the set of all t¥ ¢ [to,tgj
such that fl(t*) < gl(t*). S is not empty since t_ e S.
Since the set A of all + such that fl(t) > gl(t) is open,

the complement A® of A is closed which implies that

A° DN [to,t2] = 8 is closed. Since S is clearly bounded,

we have that 3 is compact. Let t5 = max t. This maximum
t € S

exists since S is compact and t3 e S. Furthermore,
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fl(tB) = gl(tB) since £, - 8, is continuous.

Let o(t) = £7(t) - g;(t). Then if t ¢ [ta,tej,
o
o(t) 2 0. Also, if t ¢ [tB,té], then if L is the Lipschitz

constant (where " " is the Euclidean norm), we have

a'(t)

£1(8) - g (%)

Py (6,£(8)) = Fy (t,8(t))
|F1 (5,£(6)) = Fy(t,8(6)]
llrct,206)) - F(t,e(e)) ||
Lece) - g®)|

= Lle(6) - gy ()]

= L(£y () - &y (£))

= To(t) .

A A NA

7,8

Therefore, by Lemma 4.15, o(t) = c(ta)exp[i(t - t3)] for
all t ¢ [fg,tgl' But o(ta) = O which implies that o(t) £ 0O
for all t ¢ [t3’t2]' Since we already know that o(t) 2 O
for all t & [ty,t,], we conclude that o % 0 in fta,tg].

Now o(t) = fl(t) - gl(t) which implies 0 = fl(t2) - gl(tg).
Therefore fl(tg) =-gl(t2). But by assumption,

fl(tg) > gl(t2) giving a contradiction and thus proving

the theoremn.

Corollary 4.18. Let E be a closed region of x-space

where X = (Xq,X5,++%% ). Let E_ denote the set of all

(t,x) such that t € fto,bo] and x € E where b, > t,.

Let F = (Fl,F2,---,Fn) be defined on Et and satisfy a
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Lipschitz condition (with respect to x) on Ef. Let

g = <g1""’gn) be a solution of the vector differential

equation QE = F(t,x) satisfying the initial condition
equarion gy &

o) o o L= - -
g(t)) = g = (gy+---,8,) € Interior E. Let [t ,by] be

the right maximal interval of existence of g. Finally,

suppose that the function f = (f,,.-«,f ) satisfies:
P 1 ‘tn’ =TT TR

£1(t) £ P (5,£(%)) for t e [t ,b ],

f2 T 521
kil = 8.
n n
and the initial condition f;(t. ) £ g7. Then £(t) £ (%)

for t & [t,,ty] where t; = min{p_, b i.

For the forthcoming proof of lower boundedness we

need several additional preliminary results.

Proposition 4.19. TLet I_ > O. let t* ¢ (0,b] such

that for all t e (0,t*) we have v(t) < 0. Tet t e (0O,t*).

Then n(t) > n(0), m(t) > m(0), and h(t) < h(0).

Furthermore, if %%(t*) > 0 and v(t*) = 0, then

n(t*) > n(0), m(t*) > m(0), and h(t*) < h(O).

Proof. Such times t* exist by Remark 1 following
Proposition 3.6. Let t* be any such time; i.e., let
t* ¢ (0,b] such that for all t e (0,t*), v(t) < O. By
the same Remark we know that initially n and m are
increasing and h is decreasing (all strictly if t # 0).

Therefore, in order for the first conclusion to be false,
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there must exist a time % such that at least one of n,

m, or h equals n(0), m(0), or h(0) respectively; i.e.,
suppose that there exists % & (0,t*) such that n(%) = m(0).
Without loss of generality assume that m(t) > m(0) for

all t € (O,%). Then m is nonincreasing at % which

implies %%(%) £ O. Therefore by Proposition 4.1,

m(%)
v(%) < 0 = v(0) which implies, by Proposition 4.5,
w(®
contradiction. Therefore, if t & (0,t*), then m(t) > m(0).

u(%). Since % ¢ (0,t*) we have by hypothesis

ity

A\

1(0) = m(0). Therefore m(%) > m(0) which is a

Similarly, if n(%) = n(0) or if n(%) = h(0) we can reach
a contradiction by the same type of argument, The first
conclusion then follows.

Now assume v(t®) = O and %%(t’) > 0, Then, by
Proposition 4.3 (i), JA(t*) > 0, $X(+®) < 0, and P(s*) < o.
By what has already been proved, since n, m, and h are
continuous, it follows that n(t*) 2 n(0), m(t*) 2 m(0),
and h(t*) £ h(0). Now if say h(t*) = h(0), then since
h(t) < h(0) for all t £ (0,t*) and h is continuous, there
is a neighborhood N; of t* such that for all t e Ny N\ (0,t%),
dB(t) > 0. This implies, by Proposition 4.1, that for
all t & Ny N (0,t*) we have h(t) < n(t). Now h(t*) = h(0)
implies h(t*) = n(t* since v(t*) = O = v(0) implies
n(t*) = n(0) = h(0) by the Remark after Proposition 4.4.
Since %%(t*) > O and since %%(t) > 0 for all t e Ny N (0,t%),

in order for h to intersect m in a nonzero angle there
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would have to be a neighborhood N2 of t* such that

%%(t) > 0 for 811 t ¢ Ny N (t*,b); therefore, thore

would have to be a neighborhood N3 of t* (where N3 N, A @)
such that h(t) > n(t) for all t ¢ N% n (+*,b). But,

by Proposifion 4,1, h(t) € n(t) for all t ¢ N2 N (t*,b).

Since there are points common %o N2 and N, this wonld be

3
nonsense; therefore h cannot intersect n in a nonzero

dh sy _ dngee Ah %y - o o
angle. Hence dt(t ) = dt(t ). But dt(t ) = 0 since
h(t*) = n(t*) above, and %%(t*) > 0. 30 we have shown
that h(t*) # h(0) which implies that h(t*) < h(0) since
we already know that h(t*) ¢ h(0). A similar nroof

follows for n and m.

Corollary 4.20. ILet I_ > O. Let t* be as in

Proposition 4.19. Then if %%(t‘) = 0 and v(t*) = 0,
at least one of the following statements must hold:
(1) n(s*) > n(0),

(i1) m(t™) > m(0),

(iii) h(+t*) < h(0).

Proof. Since we know that n(t*) 2 n(0), m(t*) 2z m(0),
and h(t*) £ h(0), if none of the statements (i) - (iii)
hold we would have n(t*) = n(0), m(t*) = m(0), and

h(t*) = h(0). Then since v(t*) = O, we would have

v(t*) = v(0)
n(t™) n(0)

n(0),
m(Q),

and
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n(t*) = n(0) = n(0).
This would imply v(t*) = n(t*), n(t*) = m(t*), and
n(t*) = h(t*) which would imply %%(t') = O where J = n, m,
or h. Thus (v(t*),n(t*),m(t*),h(t*)) = (0,n(0),m(0),h(0))
would be a stationary point of (2.13). But for I,> 0, it
has already been shown that (0,n(0),m(0),h(0)) is not a

stationary point of (2.13). The conclusion follows.

Lemma 4.,21. Let %% = «(1/8)(\u + W+ Io) where

0 < I, £.07272, 6 = .00114778716,

2

= 1 %, (0) _
+ gNah<O) 1 + (%) 5.9945300 + W + gl’

and
- 1 o, (0)
v = lngNah(O){% + (ﬁ)[3‘9945500 * EAIT)
- 12g,n*(0) gﬁ—;—l + 10.5989g, .
K 2K £
Then

(1) u(®) = [(w+ 1/0][-1 + exp(-2t/8)] is the

unique solution passing through u(0) = O where

t is any real number;

(ii)  inf u(t) > -115.
t & RY

Proof. This linesar initial value problem has a unique
solution by elementary theorems. It is easily verified

that u, defined in (i), satisfies the differential equation
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for all time t. Turthermore, u(0) = 0. Now exp(=-3:/8) > 0
for all t so that -1 + exp(=Z\t/6) > =1. Therefore if it

is shown that (¥ + Ib)/x > 0, then it follows that

u(t) > - [(#+ I)/x]. Now I, > O by hypothesis. We show
that N and w are greabter than zero. Since A is composed
of the sum of positive terms, AN > 0. Since n*(0) < .011
and (Qﬁ - 1)/28 < .9, we have by Remark 3% following
Proposition 3.2

1157,,h(0) - 12@Kn‘(o><2ﬁ - 1)(1/28)

> 115(.120)h(0) - 12(.0%36)(.011)(.9)
12[1.150(0) - (.036)(.0099) ]
12(h(0) -~ .0003%6)

A\

> 0.
Therefore, ¥ > 0. So (¥ + Io)/x > 0.
Since u(t) > —[(4’+ Io)/>1, we have

inf u(t) 2 -[(w+ I )/x]
1
t e R

Now — [(w+ I_)/x] > -115 if and only if I € 115X-v.
We have

115N - Y

- 115{gmt 02k - 1RR) ¢ §,

+ éNah(o)[i + (1/R)(3.9945300 + (ah(O)/fh(_115))>]}
1158 h(O)[1 4 (L/R)(3.9945300 + (y,(0)/£,(-115))) ]
+ 12§;m*(0)(2k - 1)(1/2R) - 10.59898,

which implies
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1158, n"(0) (2K - 1)(1/2K) + 1158,
+ 128,n*(0) (2K - 1)(1/2K) - 10.59898,
= 1278n"(0) (2K - 1)(1/2K) + 104.4011F,

127(.036)(,01018456 8.0216811 7
¢ 5. 02 1EBIT + .0%132033

> (127)(.00036664434)(.88915591) + .03132033

> .04140250 + .0313203%3

07272283 .

Therefore, since I0 g .07272 < ,07272283 < 115 %= y, we
have —[(w+ I_)/x]> -115.

115X - w

LI}

Hence

inf u(t) > -115.
t & Rl

Proposition 4.22. Let [fl,tzj be any interval such
0. Then m* (£)F2(%) < 1.3315100.

IIA

that =115 £ v(t)

Proof.
w* 38 - w o (V) - (ay(v) + By (v))m]

- fo(v) + B (W] Cag(m) /log() + 8,(N]) - m§
= [ag(v) + B(W][ £,(0° - w’] .

Let S; = [-115,12] and S, = [-115,0]. ILet
¢(m) = yo* - o’
where y is a positive constant. Then ¢ has a maximum at

(2/3)Y. Therefore, if y = max fm(v), then
v(t) € S,

7 See footnote 2,

70



for t ¢ [tl’t2]

o (D)§R(6) < o (v(8)) + B_(v(£))] (vn’ () - m* ()

1A

[, (v(6)) + B_(v(6))] (¥ (2/3)* - v*(2/5)°)
= (w/27)v o (v($)) + B_(v($))]

A

(4.6) (4/27)Y>  max S[am<v<t>> + By (v(6))]
2

v(t) €

By Proposition 4.2, fm is strictly decreasing with
respect to v for all v. Therefore vy £ fm(—l]S) < .09925418 .
By Property 3.e

max [am(v) + Bm(v)] = am(—115) + Bm(—115) .

vV € Sl
Therefore,

s N[oc (v(£)) + B (v($))]

A

o, (=115) + B (~115)

< 9.00783%19125

So we have by (4.6)

A

n* 38 < (4/27)¢ max (o (v) + B_(v)]
v = S2

8

A

(4/27)(.99925418) 7 (9.0078319125)
(4/27)(.99776421)(9.0078%19125)
(.1478169é)(9.oo78519125)

< 1.3%3%15100 .

N

8 See footnote 2.
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Proposition 24.23, Let t* ¢ [O,b] be such that for
a1l t ¢ [0,4*], 0 2 v(t) 2 -115. Then h(%) 2 £,(-115)

for all t & [0,t*].

Proof. Let t* satisfy the hypothesis (such times

exist by Remark 1 following Proposition 3.6.). Let
t e [O,t*] and let S = [;115,01. By Proposition 4.2,
£, = ah/(och + Bh) is a strictly increasing function.
Therefore

inf £, (y) = min £ _(y) = £.(~115) > 0 .
h h h
yes yeS

Since v(t) 2 =115, we have by Proposition 4.2,

n(t) = £,(v(t)) 2 £, (~115) .
Also, since m is initially strictly decreasing (Proposi-
tion 4.2 (ii), the Remark following Provosition 4.2, and
the Remark following Proposition 3.6) we have

inf n(t) < n(0). Hence,
t e [0,t%]

(4.7) h(0) > inf n(t) 2z £, (-115).
t e [0,t"]

Suppose there exists % e [O,tﬂ such that h(%) = fh(—115).
Since we have (4.7), h(0) = n(0) = fh(O) > fh(-115), and

the fact that h is a continuous function, there exists

T s % such that (%) =  inf n(t), h(T) < h(t) for all
t € [0,t%)
t e [0,%], and %%(E) < 0. But n(%) = inf n(t)

t € [0,t"]
implies h(t) £ n(t) for all t ¢ [O,t*] which implies
h(t) £ n(%¥). Therefore, %%(E) 2 0 by Proposition 4,1,
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Hence %%(E) = 0. We claim that, for the interval [0,t%],
h has an absolute minimum at t. If t = t* we are done.

g *

So we assume t < t . TIet A e (O, inf n(t)). Then
t ¢ [0,t]

by definition of %, there does not exist a t & [0,T ]
such that h(t) = A. If there is a t ¢ (T,t*] such that
h(t) = A, let t™ be the first such time. Then (") £ O.

But A < inf n(t) and h(t**) = A implies h(t**) < n(t*%
t e [0,t*]

which implies (Proposition 4,1) %%(t“f)> 0. This
contradiction gives us that there can be no t e (t,t*]
such that h(t) = A. Therefore, since A was arbitrary we

have h(t) =2 inf mn(t) for all t € [0,t*] and h has an
t e [0,t%]

absolute minimum at t when h is restricted to [O,t*].

Note that this implies that if % exists then inf n(%)
t e £EO,t*]

equals fh(—115) which implies there is a time t ¢ [O,t']
such that v(t) = -115. If no such £ exists then since
h(0) > fh(—llS) and since h is continuous we have

n(t) > £,(~115) for all t ¢ [0,t*]. In either case
n(t) 2 £,(-115) for all t € [0,t*].

Lemma 4.24. Let I > 0. Let (v(t),n(t) ,m(t) ,h(t))

be the solution of (2.13) in D. Let t* e (O,b] be such

that for 2ll t £ (0,t"), -115 < v(t) < O. As in Lemma 4.21,

let u(t) = f(u)+ Io)/A][—l + exp(—xt/bﬂ where t is
arbitrary, & = .00114778716,
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N = Fgn®(0)(2R - 1)(1/2K)
+ Byah(0{1 + (1/8)[3.9945300 + (o, (0)/£,(-115)]} + &,

and

W = 1158, h(0){1 + (1/R)[5.9945300 + (ay,(0)/£, (-115))]}
- 128;n*(0) (2K — T)(1/2K) + 10.59898, -

Then, for all t e [0,t9 ,
u'(t) £ Hy(u(t),n(t),m(t),h(t)).

Proof. Such values t* exist by Proposition 3.5 and

Remark 1 following Proposition 3.6. Let t* be any such
value. By Proposition 4.19 we have, for all t ¢ (0,t*)
n(t) > n(0), m(t) > m(0), and h(t) < h(O).
Therefore, for all t ¢ [0,t*]
(4.8) n(t) 2 n(0), m(t) 2 m(0), and h(t) & h(0).
Let t € [0,t". Consider a (u(t))(1 - n(t)) - B (u(t))n(t).
Now Bn is an increasing function which implies
B (u(t)) £ B_(u(0)) = B (0) = (1/8)
since u(t) € 0 = u(0). Therefore by Theorem 4.8
dB(5) = o (u(6))(1 = n(6)) - B (ul))In(*)
~B(£)n(t)
2 -(1/8)n(t) .
Hence 4n’(t)%%(t) > -(1/2)n*(t) which implies
K(a(®),n(8)) = & (2)r[n*(6) + (§)(n* () F @)
éK(ﬁ)R[h“(t) - (1/ﬁ)<1/2>n‘<t)]

A\
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which implies

(4.9) K(u(t),n()) > g (2/2)Rn*(0)(2Kk - 1)(1/2K),

by (4.8) and the fact that 2K — 1 > 0. Now
o, (u($)) (1 -~ h(t)) = By (u(t)Ih(t) < oy (ult))
£ o, (0)
(4.10) = .07

since h(t) < 1 by Theorem 4.8, since o, is increasing,

and since u(t) £ 0. Therefore by (4.10) and Provosition 4.22

Na(u() ,m(5) ,0(8)) = Ey,(2)R{m* (0n(e) + (Fre (9In()ECo)
. m’(t)%%(t)'}
< gNa(g)R{Q’(t)h(t) + (g)[3n(t)(1.3315100)
+ m’(t)ah(O)]}
- gNa(g)Rh<t){§’(t> + (%)[3.9945300

m‘(t>ah<o>]
+ —_—7;(57——— .

By (4.8) and Theorem 4.8
Na(u(t) ,m(t),h(8)) < &y (5)Rn(0)

(4.11) -'{1 +(%)[3.9945300 + (ah(o)/h(t){]} .

By Proposition 4.23, h(t) 2 £, (-115) for all t e fo,t*].
Therefore, by (4.11)

Nau(t),m(6) ,h($)) < Eyo(§)Ra(0)

(4.12) : {1 + (3)[3-9945300 + (ah(0>/fh(-1lsjl}.
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Using (4.9) and (4,12) we have, since O 2 u(t) > -115,
K(u(t),n(t)) (u(t) - 12) + Na(u(t),m(t),h(t))(u(t) + 115)

+ (2)Rg, (u(t) + 10.5989) + (Z)mr, <

< (2)rEgn*(0) (2R -1)(1/28) (u(t) - 12)

(o
. (§)R§Nah(0){;+ (%)[3.9945300 * EE%:E%gi]}(u(t) + 115)

+ (%)Réi(u(t) + 10.5989) + (2)Rr

a o]

= (B)r[xas) + v + 1] (4.13)

Hence from (4.13) and Remark 2 following Proposition 3,2
Hl(u(t) on(t) ,D](t) ’h(t))

5 _{[(g_)m + (gha) B (8) + Eggn’ (D)B(E) + é)}-l}
L RIORTREN

> - [(%)R/(%)Rb][ku(t) + ¥+ Io]

= - (e ruw) + w1 ],
Since, by Lemma 4.21, u'(t) =~ - (1/6)[%u(t) + Y Io] we
have H,(u(t),n(t),n(t),n(t)) > u'(t) for all t ¢ [0,t*]

and the conclusion follows.

Theorem 4.25, Let 0 < I_ § 72.72 uA/cm®. Let
(v(%),n(t),m(t),h(t)) be the solution of (2.13) in D and

let [O,b] be the right maximal interval 3£ existence of

the solution in D. Let 4 be the first positive time that

the solution v attains either =115 or O unless v attains
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neither, then let d = b. Then for all t ¢ [0,4],

v(t) > =115 .

Proof. We wish to show that v cannot become -115
before it becomes zero a second time (v(0) = O). Suppose
it does; i.e., suppose v(d) = -115. As in Lemma 4.21, let
u(t) = [(?J+ IO)/A][-l + exp(—%t/b)] for arbitrary t where
& = .00114778716,
A = gen*(0)(2k - 1) (1/2K)

¢ Bgpn (1 + (/R [3.0945300 + (ay(0)/2, 11} + 5,

and
¥ = 1158, n(0){1 + (1/B)[3.9945300 + (0, (03/2, (-115))]}
- 12g;n*(0)(2k - 1)(1/2K) + 10.5989%, .

Then u and d satisfy the hypotheses of Lemma #4.24. 'Therefore,
for all t & [0,da], u'(t) £ Hy(u(t) ,n(t) ,,m(t),h(t)). Also,
since H = (Hl’HQ’HB’H4) is analytic in D, then H satisfies

a Lipschitz condition in D. Now since d £ b, if we let

b0 of Corollary 4.18 equal d, then d also equals the tl of

Corollary 4.18. Then, since u(0) = v(0), if we let u be

f, and v be 81, we have that all of the hypotheses of

1
Corollary 4.18 are satisfied. Therefore, by Corollary 4.18,
u(t) £ v(t) for all t € [0,d]. By Lemma 4.21,

inf 1 u(t) > =115 if 0 < I _ £ .07272 . We have
t € R ©

0 < I0 £ 72.72 uA/cm® which, since the consistent units
are mA/cm®, gives O < I, £ .07272 . Thus, u(d) > =115

which implies v(d) > =115 contradicting the assumption.
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Therefore v cannot become -115 before it becomes zero a
second time. ©Now if, for positive time, v never attains
either zero or =115, then since v(0) = O we have d = b
and v(t) > =115 for all t € [O,b]. If there is a time

t e [O,b] such that v(t) = O then, by the above, d is the
first such time and v(t) > =115 for all t € [0,d41. 1In
either case v(t) 2 -115 for all t € [0,4].
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V. RESULTS OF THE BOUNDEDNESS THEOREMS

1. Solutions for All Nonnegative Time

The first conclusion is that for Io 2 0 we have
existence and unigueness of the solutions of the initial
value problem (2.13) for all time t 2 O. This follows
from Theorem 3.3 and Remarks 1 and 2 after Theorem 3.3;
i.e., it was proved that the right maximal interval of
existence of the unique solution to (2.13%) was either
[0,0) or [0,b] where (v(b),n(b),m(b),h(b)) € 3D (the
boundary of D). In IV we proved that O < J(t) < 1 where
J =n, m, or h, and that w < v(t) < 12 for any t 2 O for
which the solution (v,n,m,h) existed. Hence for no time

t 2 0 do we have (v(t),n(t),m(t),h(t)) € 9D implying b = .

2, New Bounds for n, m, and h

From Theorem 4.8 and V.1l we have O < J(t) < 1 for all

t ¢ [0,©) where J = n, m, or h., By Proposition 4.16 we
have the results n(t) > n(0), m(t) > m(0), and h(t) < h(0O)
for any nonnegative time t up to the first positive time
t* that v(t*) = 0. So, for all t e [0,t*)

n(t) > .31767689,

m(t) > .0529%2485,
and

h(t) < .59612078

For any I 2 O such that -115 = v(t) £ 12, we can obtain
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new bounds for n, m, and h which hold for all nonnegative
time. Although they are not as good as the above bounds,
we do obtain new upper and lower bounds, and at the same
time prove that the functions n, m, and h are bounded
away from zero and one. Also, it should be noted that if,
for some positive time, the value of v were known, then
considerably better resolutions on n, m, and h could be
achieved by using the functions V, n, and 7.

For the new upper and lower bounds we have the

following proposition:

Proposition 5.1. Let I0 2 0 be such that

-115 £ v(t) £ 12 for all t € [0,®. Then for all t & {0O,m)

_ a,(-115) N > o (1o
(1) £,(-115) = Groypey T p_(aiTs) 2 BV 2 £,012),

(11) £,(-115) 2 m(t) 2 £, (12),

(1i1) £,(-115) £ h(s) £ £, (12).

Proof. By Proposition 4.23%, with b = t° =0, we

have h(t) 2 £, (-115) for all t e [0,®). The proofs of the
other five inequalities of (i), (ii), and (iii) are similar

to the proof of Proposition 4.23,.

Remark 1. By substituting in the wvaluez of 12 and

-115 into the functions f_, £, and f, , we find that the

new bounds are, for all t ¢ [0,),

.158791234 £ n(t) £ .97250201
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A

.011825512
.000222790%56

HA

m(t)
h(t)

.99925418

1A
1A

89619315 .

Remark 2. The method of proof used in Proposition 4.2%
will show that h is bounded away from zero for any IO 2 0
if =115 is replaced by W = min 8—115, v, - (Io/él)}' Such
a proof will also show that n and m are bounded away from
one for any Io 2 0., Tor a given IO 2 0, new upper bounds
could be calculated for n and m by using fn@ﬂ) and fmGU)
respectively; likewise, a new lower bound could be
calculated for h using fh@D)- However, since W< -115
would imply that .97250201 < fn(w) < 1,
,90025418 < fm(to) < 1, and O < fh(u)) < .0002227903%56, they

would probably not have much use in numerical work.

3., Continuous Dependence upon Parameters

The third result that can be derived is the continuous
dependence of the system upon parameters. The following

theorem and its proof may be found in [14, pPp. 44, 45]:

Theorem 5.2. Assume Q(A) is defined on a p dimensional

rectangle R ={X

IR A h o< r} and is continuous at

A= Ao’ and that if f, fy, and £ are continuous in an

(g + p + 1) dimensional region S = g(x,y,x)l (x,y) € D,

D a region containing (xo,¢(xo)); N E Rf. Consider the

initial value problem

(i) dy/dx = f(x,y,X)
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(ii) ¥ = ¢(N) for x = x_,

and assume that the solution y = y(X,Ao) for A= \o exists

EE least iB the closed finite half-intervsal

X, £ x £x, + by <®. Then for any € > O, there exists a

& > 0 such that for f X-»Ao'<' 6, the (unique) solution

y(x,\) exists at least in the same interval, and

ly(x,N) - Y(x,ﬁo)l < £ there.

Since for our purposes p = 1, g = 4, ¢:Rl———->R4 is

the constant function given by ¢(A) = (0,n_ 4m ,h ), R = R,
f = (Hl’H2’H5’H4> and is autonomous, etc., this theorem

can be specialized to:

Theorem 5.3, Let Io 2 0, Let w= min{ -115, Yl-—(Io/él)h

Let D = {(v,n,m,h) ! W< v <12, 0 < J < 1 where

J =n,m, or hf. Consider the initial value problem (2.13).

Let [0,b;] be any finite interval and let N\, equal any

parameter in Hl(v,n,m,h). Let x(t,%b) = (v(t),n(t) ,m(t),h(t))

be the solution to (2.13) in [O,bll. Then for any & > 0,

there exists a & > O such that for IA-mKol < &, the

(unique) solution x(t,\) exists at least in [0,b;] and

x(t,N) - x(t,A)| < e.

Proof. As stated above, most of Theorem 5.% follows
directly from applying Theorem 5.2 to system (2.13) and
D. The fact that [O,b1] can be any finite interval

follows directly from the boundedness theorems.
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By allowing %O to be the propagation rate 8,

Theorem 5.3 provides the mathematical proof that the former
extreme sensitivity (see [5], [8], and [9]) to the propa-
gation rate is removed. One can also vary the maximum
values of the various conductances, or the radius of the
axon, or the resistance without measurably changing the
solutions of the system. A thorough discussion and
numerical treatment of such possibilities can be found in
{7, part II].

Perhaps the most important parameter in the system is
the sustained constant membrane current density Io' The
choice of IO determines, to a large extent, the membranous
cell that is to be modeled. Because of its importance we
shall devote Chapter VI to a discussion of Io and its

effects on system (2.13).
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VI. THE THRESHOLD PHENOMENON

l., Some Past and Present Numerical Results

H. M. Lieberstein (71 solved the system (2.13)
numerically for various values of IO. He demonstrated
numerically the existence of a value of IO, called a
threshold, which exhibits the following behavior: if
IO is chosen below threshold, the first component v of the
solution, starting at zero, varies slowly in time with
small maximum negative and positive slope and is bounded
by £10 mv; if Io is chosen Jjust above threshold a potential
spike develops which falls rapidly to about -93 mv, which
then Just as rapidly returns to zero, enters the refractory
period, and imitates thereafter the v curve for subthresh-
old wvalues of IO. Dr. Lieberstein found that IO = 2,27
pA/cm* was below threshold and that I, = 2.28 wA/cm?

was above threshold. He also found values of IO,

called successive thresholds, which yield two, three,

four, etc. potential snikes before settling down to a
subthreshold type behavior. The values of IO for two,
three, and four spikes, are respectively 5.98 uA/cm®,

6.16 pA/cm’®, and 6.20 pwA/cm®. The numerical evidence

also strongly indicated a value of IO, called the limit
of thresholds, for which an infinite sequence of potential
sovikes 1s fired.

Using the IBM 1130 digital computer at Wichita
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State University, we obtained numerical solutions to
the initial value problem (2.13) for various values of
IO. The method used to obtain the numerical solutions
was the Runge-Kutta method of 0(¢®) accuracy with ¢ = .05
Most of the cases which appear in [7] were run and our
results coincide with the results in [7] except that
we found only seven potential spikes for I0 = 6.23 pA/cm’.
This value of IO was the one which was estimated in [7]
to be the limit of thresholds, The discrepancy probably
lies partly in the small variation of parameters in our
system (see footnote 1) and partly in the difficulty of
predicting a limit from numerical evidence.

In addition to obtaining the solution component v,
we also obtained the numerical solutions for n, m, and h,
Representative graphs of these functions are presented in
Figures 1 and 2 where (i) Io has values 2.27 pA/cm® and
2,28 pA/cm® in Figure 13 (ii) I, has values 5.97 nA/cm?
and 5,98 pA/cm® in Figure 2. The graphs correspond
regpectively to Figures 2a and 2b of [7]1. In Figures 3
and 4 the functions v and m are graphed for other larger
values of Io. It should be remarked that in our graphs
positive potential differences are above the time axis
and negative potential differences are below the time
axis according to standard mathematical practice.
The graphs of voltage against time will therefore appear

to be "upside down" to most of the graphs
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which appear in the physiological literature. Hodgkin

and Huxley's conventions on sign forced them to reverse
the standard mathematical convention and graph positive
potential difference "down" and negative potential dif-
ference "up". We discontinued this practice because of
the confusion which would have resulted between theory

and graphs for such concepts as "concave upward", "con-

] .
, 'decreasing", etc..

cave downward", "increasing'
The wvarious graphs represented in Figures 1-4

indicate that the function m has maxima and minima

shortly after v has minima and maxima respectively. It

can be seen that for any IO such that v remains positive
for a moderate length of time (for IO less than about

80 pA/em®) m drops below m(0). For these values of IO,
which contain the range in which Hodgkin and Huxley were
concerned, the assumption of Theorem 4.1% is substantiated
with v* less than or equal to about .48 mv for subthreshold
values and greater than or equal to about 3 mv for supra-
threshold values of IO. The n and h also agree very well
with the behavior desired by Hodgkin and Huxley (compare
our Figure 1 with Figure 19 of [5]) which provides further
evidence of the ability of these equations to model impulse
type phenomena. For larger values of Io, v either never
becomes positive or is positive for only a very short
period of time. In either case v < 3 mv and therefore

taking v* > 3 mv satisfies the assumption of Theorem 4.13%
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vacuously.

2. The Effects of the Theorem on Continuous Dependence

For this section I_, measured in uA/cm®, will be in
the interval [2.27,2.28]. Theorem 5.3 specified that for
a given fixed finite time interval [0,5] and a given
I, > O, say I: , the solution to (2.13) corresponding to
any IO sufficiently close to I: must remain arbitrarily
close to the solution of (2.13) corresponding to I;
throughout the interval [0,bJ. Since it can be shown that
v is concave upward at t = O for IO > 0, and since the
numerical evidence indicates

(i) for I, = 2.27 uA/em?, v is concave upward when-

ever v is negative;

(ii) for I, = 2.28 pA/cm®, v is concave downward

as it starts its rapid decrease to -93%3 mv,
Theorem 5.3 admits only two mathematical possibilities
for a threshold. The first possibility is that as IO
decreases from I0 = 2.28 pA/cm® the first time that v
becomes concave downward tends to plus infinity. In this
way, for a given [0,b] the first potential spike would
occur at a time t > b as IO is increased from 2.27 uA/cm®,
no impulses of intermediate size would occur, and the
theorem would be satisfied. Since v starts out decreasing
and negative for any IO > 0, the fact that near Io = 2,27

vwA/cm® v is concave upward whenever v is negative would
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imply that there is some value of I, ( 2.27 < I, < 2.28)
such that the solution v corresponding to this Io would

have the property 1lim v'(t) = 0. As we shall see in VII
t—0

this would imply that (v,n,m,h) has a stationary point
(¥,0,m,h) where ¢ is approximately ~8 mv. As we shall

also see in VII, for 2.27 < Io < 2.28 there is no stationary
point (¥,h,m,h) where ¥ is near -8 mv. Therefore this
possibility cannot be the one which explains the threshold
phenomenon. For an example which does satisfy the above

description, we have:

Example 6.1. Consider %% =y + N with initial
condition y(0) = O., It can be readily verified th:t the
solution y(t) = AN(-1 + exp(t)) is the unique solution
to this linear differential equation and also that the
hypotheses of Theorem 5.3 are satisfied, implying that
the solution y is continuously dependent upon A. For
A= -1, the solution is y(t) = 1 - exp(t) and is concave
downward. For A= +1, the solution is y(t) = =1 + exp(t)
and is concave upward, Thus we have seemingly a similar
gross behavior as that of the solution v of system (2.13)
near the point where the "off " and "on" solutions divide.
As A increases from minus one to plus one it is concave

downward for every negative X\ and concave upward for every

positive N. The value of A such that 1im y'(t) =0
t—®

is A= 0 and note that the solution for A = O is a stationary
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value for the differential equation.

The other mathematical possibility and the only one
remaining is that as I0 increases from 2.27 pA/cm® to
2.28 pnA/em’® the solution v assumes intermediate positions
between the two curves and has minima at intermediate
points between -8 mv and =93 mv. For this case there is
no really distinect threshold (as Io takes on all real
number values between 2.27 and 2.28), but only an extremely
rapid change from one type of behavior to another which
appears to give a jump of voltage when one is varying
IO by letting it assume only terminating decimal wvalues
as is necessarily the case in computing and in actual
experiments. In the next section we will verify numerically
that this continuous change is the behavior which the
reformulated Hodgkin-lTuxley model exhibits. (This type
behavior has been called a quasi-threshold phenomenon
in [13%1.)

It should be noted that in £13], where various past

models (good and bad) of the threshold phenomenon have
been discussed and classified, we find that these two
mathematical possibilities are the only two types of
behavior that have been proposed for systems of differ-
ential equations consisting of analytic functions. It
is made clear that the models discussed in [1%] do not

involve any applied sustained membrane current density.
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However, since the results obtained using the reformulated
Hodgkin-Huxley model match the results desired for the
originel Hodgkin-Huxley model, it is appropriate to point
out some differences which are present. There seemed

to be some question with the original Hodgkin-Huxley

model as to the presence or absence of '"saddle points"

and their relevance, if any, to the threshold phenomenon.
This could perhaps be due in part to the mathematical
problem of dealing with a system consisting of one second
order equation and three first order equations and the
desire to look at only the subspace of the variables v

and dv/dt. For the reformulated model we shall show
numerically that no singular points of any type are in-
volved in the threshold phenomenon. Furthermore, since
the reformulated model is a system of four first order
equations, the space with coordinates v and dv/dt has no
relevance as a "phase space" or subspace of a "phase space".
There also seems to have been, in [13%3], no evidence then
available (1955) indicating any intermediate impulses
for the solution v between the "all" and '"none" curves.
Such evidence was given in [9] (1959), but the extreme
instability inherent in the numerical handling of the
original Hodgkin-Huxley model completely obviated any
possibility for a precision search for a threshold with
distinctions fine enourh to conclusively exhibit inter-

mediate behavior. Below we present a search for inter-
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mediate values of v using an IBM 360 Series, Model 76
computer. As will be seen, seventeen digits were needed
to indicate adequately the behavior of v as IO varied. 1t
is important to note that such accuracy is only meaningful
and can only be trusted when the system is continuously

dependent on the initial values and parameters.

3., New Numerical Results

As stated in Section 2, an IBM 360 Series, Model 76
computer was used to search for a threshold between
I, = 2.27 nA/cm® and I, = 2.28 pA/em” . In Table 2 we
list the cases run, showing the intermediate vpositioans
obtained as we varied IO. The maximum number of digits
that could be computed accurately was seventeen. TFor two
values of Io which differed only in the seventeenth
decimal place the intermediate values of a minimum for v
were =19.73% mv and -46.06 mv, Note that v = -46.06 mv
is approximately half way between the minima of v for the
cases I = 2.27 1wA/cm® and I, = 2.28 pA/cm®. Figure 5
shows the graphs for the solution v of some renresentative

cases from Table 2,

Remark. The functions n, m, and h show the same
kind of behavior as v concerning the threshold (sec Figure 1)
although it cannot be so easily seen since they only wvary

between zero and one.
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TABLE 2. Intermediate Values of v Near Threshold

I, (mA/cm? ) t (ms) at v minimum
v minimum (mv)

. 00227 6.65 ~7.6%
002271 6.70 ~-7.71
002272 6.75 -7.80
« 002273 6.85 ~7.90
« 002274 6.95 -8.01
» 002275 7.05 -8.16
« 002276 7.20 -84 34
« 002277 745 -8.60
002278 7.90 ~-9.09
.0022781 7.95 -9.17
. 0022782 8.05 -9.27
«0022783% 8415 -9.,40
. 0022784 8.30 -9.57
.0022785 8.55 -9.83
« 0022786 9.15 ~10.48
. 00227861 9.30 -10.65
. 00227862 9.60 -10.96
. 002278621 9.65 -11.01
. 002278622 9.70 -11.07
.00227862% 9.75 -11.1%
. 002278624 9.80 -11.20
.002278625 9.90 =-11.%0
. 002278626 10.00 =-11.42
.002278627 10.15 -11.59
. 002278628 10.45 -11.91
. 0022786281 10,50 -11.97
. 0022786282 10.55 ~-12.0%
. 0022786283 10.60 -12.11
. 0022786284 10.70 -12.20
. 0022786285 10.80 -12.33
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TABLE 2. continued

I, (mA/cmz)\

.0022786286
.0022786287
.00227862871
.00227862872
.0G227862873
.00227862874
.002278628741
.002278628742
002278628743
.002278628744

. 002278628745

. 002278628746

. 002278628747

. 0022786287471
.0022786287472
.00227862874721
.00227862874722
.0022786287472%
.00227862874724
.00227862874725
.002278628747251
.002278628747252
.002278628747253%
.002278628747254
.002278628747255
.0022786287472551
.0022786287472552
.002278628747255%
.0022786287472554
. 00227862874725541

t (ms) at
v minimum

11.00
11.35
11.40
11.50
11.65
11.90
11.95
12.00
12.10
12.15
12.25
12.45
12.90
13.05
13.35
13.40
13.50
13.55
1%.70
14.00
14,05
14.15
14,25
14,40
14,70
14,75
14.85
15.00
15.30
15.35

93

v minimum
(mv)

-12.52
-12.94
=13.02
-1%.14
-1%.31
-1%3.62
-1%.68
=-13.74
-13.82
-13%.92
~14.05
-14.27
~1+.86
-15.05
~15.45
-15.53
-15.6%
-15.76
-15.96
-16.39
~16.48
-16.58
~16.73
-16.96
~-17.49
-17.61
=17.77
-18.03
-18.55
-18.64



TABLE 2. continued

I, (mA/cm® ) t (ms) at v minimum
v minimum (mv)

.002278628747725542 15.40 -18.78
«00227862874725543 15.55 -19,00
.00227862874725544 15.70 -19.29
.00227862874725545 15.90 =-19,73
«00227862874725546 17.85 =-46,06
«00227862874725547 17.05 ~56,.,32
.00227862874725548 16.95 =57 456
.00227862874725549 16.80 ~58.81
.0022786287472555 16.75 =59 .63
.0022786287472556 16.40 -62 .54
.0022786287472557 16.25 -63%.87
.0022786287472558 156.20 ~64 62
. 0022786287472559 16.10 -65.26
.002278628747256 16.05 -65.71
.002278628747257 15.75 -67.91
.002278628747258 15.60 -68,86
.002278628747259 15.55 -69.53
.00227862874726 15,45 =70.04
.00227862874727 15.15 =72417
.00227862874728 15.00 -73%,09
.00227862874729 14,90 -73%,68
.00227862874773 14.85 =74,04
.0022786287474 14.50 =75499
0022786287475 14,35 ~76,.80
.0022786287476 14.25 ~77e32
+0022786287477 14,20 =77 64
.0022786287478 14,10 =77493
. 0022786287479 14,05 -78.16
.002278628748 14,05 -78.41
.002278628749 1%.80 -79.63
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TABLE 2, continued

I, (mA/cm?) t (ms? at v minimum
v minimum (mv)

00227862875 135,65 -30,27
.00227862876 13,20 ~82.29
.00227862877 13,05 -82.96
00227862878 12.90 -83%.42
.00227862879 I12.85 -83%,78
. 0022786238 12.75 -3%.96
. 0022786289 12,45 -85.%1
.002278629 12,30 -85.86
.0022786% 11,75 -87 «6%
. 00227864 11.00 -89.85
.00227865 1C.80 -90.58
. 00227866 10.65 -91.00
. 00227867 10.55 -01.26
00227868 10.45 -91.49
. 00227869 10.40 -91.65
.0022787 10.35 -91.75
.0022788 10,00 =-92.62
.0022789 9.80 -9%.10
. 002279 0.65 -9%.38
.00228 9.10 -94.59
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4, Conclusions

Table 2 and Figure 5 clearly illustrate the remark-
able behavior of system (2.13). The threshold phenomenon
is clearly present and accurately represented and yet
the reformulated medel contains ncne of the mathematical
pecularities and unpleasantness inherent in all the earlier
models, The system is still complicated and difficult
to handle theoretically, but numerical treatment is very
straightforward and could hardly be easier to deal with.

Although we did not search between I = 5.97 wA/cm’
and Io = 5.98 pA/cm® for intermediate potential impulscs,
it is clear how that could be accomplished and equally
clear what the results would be since stationary noints
are not involved. The same is true for third, fourth, ...,
thresholds. There is still the mathematical question
as to what provperty of the system causes the rapid change
of behavior from subthreshold to suprathreshold. It scems
probable that there is a closed connccted set T of points
of six dimensional (t,v,n,m,h,Io) space such that if at some
time t the solutions (v,n,m,h), for a given Io’ reach a
point in T, then the second derivative of the solution
component v becomes negative and an impulse is initiated.
The size of I0 affects the slope of v at to = 0 (see %%(O)
in the proof of Proposition 3.5). As I_ increases,

%%(O) gets more and more negative which enables v to take
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on larger negative values. This in turn allows n and m

to take on larger positive values and h to take on smaller
positive values. Tuture work will concentrate on this
problem in the hope that once the mathematical property
that governs the threshold behavior of (2.13) is known,
then a simpler system of differential equations can be
developed with the same such property that can replace or
at least simplify system (2.13), and still satisfy the
experimental data. In that way, perhaps one can even get

an insight into the physical mechanism of the membrane.
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VIT. STATIONARY POINTS

It has been determined numerically that stationary
points do actually play an importznt role in system (2.13)
but, as has already been recounted, not a role which is
involved with the threshold phenomenon. In order to discuss
the role which stationary points do seem to play, it is
necessary to include a section of definitions and theorems
pertaining to the theory of Autonomous Systems of Differ-
ential Equations. We shall use and combine results from

(143, (151, anad [161].

1. Prerequisites

An autonomous system of differential equations is a

system in which the independent variable does not occur

explicitly. ILet

= £(x)

QJ‘Q..
ctind

(7.1)

be an autonomous system of p differential equations. For
simplicity assume that f is defined and analytic on a
compact region D in x-space. A point Xy is called a

stationary point of (7.1) if f(xo) = 0. Such a point has

the property that the constant function given by x(t) = Xg

for all t € (-w,®) is a solution of (7.1). Since solutions
of (7.1) will be uniquely determined by initial conditions,
and if f(xo) = 0,

if there is a time to such that x(to) = X,
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then x(t) = x, for all t e (-, .
Let x(t) be a solution of (7.1). Let T = {t , b1<'t< b}
denote the maximal interval of existence of that solutien.
The set of points §(t,x(t))| t & T{ is called a trajectory
for that solution. The set of points {x(t) | t ¢ T} is
called the orbit for the solution. The whole x-space of

dependent variables is called the phase space for (7.1).

For autonomous systems every trajectory {(t,x(t))l t e T }
generates a one parameter family of trajectories; i.e., if
y is arbitrary and if {(t,x(t» I t € T} is a trajectory,
then { (t,x(t + v)) | by =y <t <b - y}is also a
trajectory for the solution x. The trajectories of this
family all have the same orbit and are called equivalent.
From the theory on the existence and uniqueness of solutions
to (7.1) if follows that there is one and only one orbit
through every point X, € D. Since our purposes are mainly
concerned with t 2 0, we introduce the notion of semi-orbit:
a semi-orbit for an orbit is that part of an orbit which
is described by t € [to,b) where to is an arbitrary but
fixed point of T.

Suppose that x(t) € D for all t € T. Then b = ®
and x is bounded. We can then talk about the concept of
1imit points for a semi-orbit. A point 3 € D is called

a 1limit point for the semi-orbit if there exists a

sequence {tn} such that t—® and x(tn)—45 as n—©,

Let {) denote the set of limit points of the semi-orbit.
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It should be noted that (L does not depend upon to. The
set {1l has the following properties (see [14, p. 69],
f15, p. 1451, or (16, pp. 3-41):

(1) 1 < Dy, N ¢ o.

(ii) If () consists of a single point 5, then b5 is

a stationary orbit (an orbit that consists of

a single point) for the differential equation.

In this case 1im x(t) = 3. (If 3 is interior
t—®

to D, then £(3) = 0.)

(iii) fl is the union of orbits; i.e., if 5 sfl, then
the entirc orbit that passes through } also
lies in {l and is defined for all +.

(iv).fl is compact.

(v) L is connected.

Note. Another way to talk about (iii) above is to
define what is meant by an invariant set. If M is a set
of points in phase space and x is a solution of (7.1),
then if we denote the sovlution x through the initial
point X by x = x(to,xo) and if x(t,M) = {x(t,xo) ' X, € M},
then M is said to be invariant if x(t,M) = M for all t.
Then (iii) can be stated: (Ll is invariant.

FPor the orbits of an autonomous system there are
only three topological possibilities for a phase space of
any dimension (see [14, pp. 57-61]). They are:

(a) an orbit may consist of a single point in D,

(b) an orbit may be homeomorphic to the unit circle
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in 2-space;

(¢) an orbit may be such that any closed finite
segment of it is homeomorphic to the closed
unit interval between zero and one.

If an orbit consists of a single point then this point is
a stationary point for the system. Case (b) corresponds

to periodic motion; i.e., if x is a solution of (7.1) and

x(tl) = x(t2) for some t, £ t,, then x is either a stationary
solution or a periodic one. If an orbit is neither periodic
nor stationary, the following can be proved ([14, pp. 61-62]):

if a representative trajectory approaches an interior

point A of D, then f£(4) = O so that & is a stationary point

of the differential system and therefore cannot belong to

the orbit defined by the trajectory. Another important

fact is that the periodicity of an orbit needs nowhere to
depend continuously on the initial data or parameters. An
example is given in [141] which shows that when a parameter
in a given system of differential equations is rational

the solution is periodic and when the parameter is irrational,
the solution never passes through the same point twice, but
comes (infinitely often) arbitrarily close to every point
in the phase space. In order to elaborate on the possibil-
ity of coming arbitrarily close to every point in some
point set we shall need some additional definitions and
theorems. We shall state several theorems which are,

together with their proofs, found in [16]. PFirst we need
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four definitions. (1) A bounded semi-orbit is said to be

Lagrange-stable. (2) A set 2 of points in phase space is

said to be minimal if it is nonempty, closed, invariant,
and has no proper subset with these properties (Examples of
minimal sets are stationary points and orbits of periodic
motion.). (%) A solution x such that x(to) = X is said

to be positive (negative) Poisson-stable if, for any € > O

and T > O, there exists a t > T (t < -T) such that
d(x(t),xo) < £, where 4 here signifies distance. A
solution that is both positive and negative Poisson-stable

is said to be Poisson-stable. (4) A solution x such that

x(to) = X is said to be recurrent if for all & > O there
exists a time interval T (depending on €) such that the
entire orbit is approximated (in d) within € accuracy by
any arc whose length corresponds to the time interval T.

It follows that any recurrent motion is Poisson-stable.

Theorem 7.1 (Theorem 1.3, [16, p. 51). A bounded

closed invariant set contains a minimal set.

Theorem 7.2 (Theorem 1.4, (16, n. 61). Any orbit in

a bounded minimal set iﬁ recurrent,

Corollary 7.3 (Corollary 1.2, [16, p. 71). If a

semi-orbit is Lagrange stable, then its set of limit

points () contains a recurrent orbit.

An orbit which is contained in () and which does not itself
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contain the semi-orbit is called a limit orbit. If the

limit orbit is periodic, it is called a limit cycle.

The results above apply directly to system (2.13) since
it is an autonomous system of analytic functions and since
we have proved that the solution (v(t),n(t),m(t),h(t))
exists and is unique and bounded for each IO e O on the
time interval [0,0). Taking D of this section to be the
same set D which we have used throughout this paper, we have
shown that (v(t),n(t),m(t),h(t)) € D for all t ¢ [O,M).
Therefore we can talk about the set {lof limit points of
the semi-orbit through (0,n(0),m(0) ,h(0)) corresponding
to some IO 2 0. We know that for each IO 2 0, [flis nonempty,
invariant, closed, and connected and that the semi-orbit
is Lagrange-stable. Therefore, by Theorems 7.1l and 7.2
and Corollary 7.5,.flcontains a recurrent orbit.

For the remainder of the paper we shall use, consistent
with those before, the following notations: D shall, as
always, be the set {(v,n,m,h)! wg vg12,0£T£1
where J = n, m, oOr h} where W = minf -115, v, - <Io/éﬂ)};
for J = n, m, or h, fJ(v) = aJ(v)/[aJ(v) + BJ(V)] and
for R = VvV, i, or 1, we shall again employ the convention:

e = V if and only if J = n, p= U if and only if J = m,

and e=n if and only if J = h.

2. A Stationary Point of System (2.13) for Each I 2 O

A "

Theorem 7.%4. Let I_ 2 O be given. Let (v,n,m,h) & D.
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A
Then (G,ﬁ,ﬁ,h) is a stationary point for system (2.13) if

>

and only if v solves the equation

[ o, (V)
(7.2) (.0%6) an(v) - Bn<V)J (v - 12)

. am(v) > thV)
t (’12O)l;m(v) + Bm(v)} [;h(v) + Bh(v) (v + 115)
+ (,0003)(v + 10.5989) + I, = 0

AN

Proof. The point (v,n,m,h) is a stationary point
of system (2.13) if and only if HJ(G,ﬁ,ﬁ,ﬁ) = 0 for
=1, 2, 3, & if and only if

K(T,0) (¥ - 12) + Na(v,m,n) (¥ + 115)
+ (E)R[gl(e + 10.5989) + Io]= 0

and

A AN
0 = aJ(Q)(l -~ J) - BJ(V)J for J = n, m, and h

if and only if

Al

K(v,n) (v - 12) + Na(v,m,h)(V + 115)
+ (g)R[gl(G + 10.5989) + I - ©

and

J = fj(%) for J = n, my and h

if and only if
g At (V- 12) + gy A h(¥ + 115)
+ gk(v + 10.5989) + IO =0

and

J = fj(%) for J = n, m, and h
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if and only if
B fy (V- 12) + éNafm’(x?—)fh(%)(%} + 115)
+ éL(G + 10.5989) + I,=0
if and only if
¥ satisfies (7.2).

Theorem 7.4 gives us an explicit means of determining,
for each I, the stationary points of system (2.13). Ve
have already seen (see Remarks 1 and 3 following
Proposition 3.6) that the initial value (0,n(0),m(0),h(0))
is a stationary point of (2.13) if and only if I, =0.

This can also be verified easily by considering (7.2).
However, for IO > O the determination of v is not as simple.
Note that if ¥ is given then bthere is one and only one
value of IO (which might be negative) such that (7.2) is
satisfied. We have not yet been able to prove that for
each I0 there is one and only one value of v that solves
(7.2). However, the following table, which gives a value
of Io for each integral value of v between v = 12 and

v = =115 presents strong numerical evidence that ¥ is a
strictly decreasing function of Io and hence indicates

that there is a one to one correspondence between Io and

¥ and therefore between IO and stationary points of (2.13).
(We also computed a value of IO for each tenth between

v = 0 and v = ~12. The results further Jjustified the
conjecture that ¥ is a strictly decreasing function of IO.)

The values of ¥ for the various valucs of IO which have
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been graphed in Chapter VI also are included in the table.
These values of v were determined numerically using the
Newton method for each given value of I0 (Both determinations
were made on the IBM 1130 computer at Wichita State
University.). It should be noted that there is no indication
of any connection at all between stationary points and

values of IO which produce thresholds.

TABLE 3. The Relationship Between Io and Stationary

Points (G,ﬁ,ﬁ,ﬁ) as Determined by Equation (7.2)

v (mv) Iy v (mv) I,
(pA/cm® ) (pA/cm’ )
12 -6.80266 ~4 6.5183%6
11 -6.48290 -5 8.87870
10 -6.14971 -6 11.61228
9 -5.79778 -7 14,76454
8 ~5.4203% -8 18.%8409
7 -5,00890 -9 22.52306
6 -4.553%02 -10 27 .2%936
5 ~4,04008 -11 32458797
4 -3.,45501 -12 38.63%987
% -2.78021 -13% 45,46405
2 -1.99534 -14 53.13692
1 -1,07725 -15 61.74044
0 0 ~-16 71.%6159
-1 1.26524 -17 82.,09140
-2 2.75003% ~-18 O4.,02%3%5
-3 4,48873% -19 107.2512%
-%3,744513]1 5.97 -20 121.86650
-3,7492619 5.98 -21 137.95525
-%.8668821 6.2% =22 155.59505
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TABLE 3. continued

v (mv) I,

(nA/cem® )
-23 174.85183
=24 195.77707
-25 218.40459
-26 242.75440
=27 268.82127
-28 296.58581.

-28.118960 300
-29 326.01010
-30 357, QU0ON7
-31 389.60085
-32 43, 64027
-% 459,01562
34 495,73431
-35 53%.61177
-3%6 572.58270
-36.688485 600

~37 612.55289
~38 65%.43079
-39 695.12862
-40 737.56%24
41 780.65665
42 824,3%%629
-43 868.5%515%
iVl 913,19159
=45 958.24937
-46 100%.65721
-47 1049. 36857
-48 1095.%4129
-49 1141.5%731
-50 1187.92225
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-2

=73
-73.999980

=4

=75

IO

(unAa/cm”)
1234 46514
1281.13%811
1327.91609
1374.,77652
1421.69918
1468 .66587
1515.66030
1562.66784
1602.67539
1656.67123%
17C3.64485
1750.58691
1797 .48901
1844,354370
1891.1443%7
1937.88512
1984 ., 56072
20%1.16656
2077 . 69858
2124.155%19
2170,52727
2216.81812
226%.02%%%
23092.140
2%09.,1.4091
2355.16910
2401 .106145
2446,95170
2492,70%87
2538.36215



TABLE 3.

¢ (mv)

continued

IO

(nd/cm®)
2583%.92588
2629. 39460
2674 ,76798
2720.04580
2765.22796
2810.31450
2855.3055%
2900.2012%
2945,00186
2989.,70777
3034.3193%5
3078.83706
312%.26138
3167.59287
3211.8%208
3255.97965
3300.03621
3344, 00244
3387.,87901

=-100
-101
~102
-10%
~104
~105
-106
~107
-108
-109
~110
~111
-112
-115%
-114
-114.9999%
-115

IO

(nd/cm?®)
2431 ,66665
3475, 36609
3518.97806
3562.503%%3
3605.94269
3649,29688
3692.56673
3735.75298
3778.85649
3821.87802
2864.81842
3907 .67845
3950.45898
3909%,16076
403%5,7846%
4078.33140
4120.800
4120,80190

The theory presented in Section 1 stated that there

are only three topological possibilities for the orbits

of an autonomous system.

We already know that for IO > 0

the initial point (0,n(0),m(0),h(0)) is not a stationary

point of system (2.13).

Therefore for any IO > O the

semi-orbit must consist of more than one point and cannot,

because of the uniqueness of an orbit through each point,

become & stationary value at any finite time,
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two sections discuss the remaining two possibilities.,

3. Periodic Solutions

Our numerical evidence indicates that there are no
neriodic solutions for the initial value problem (2.13).
For any Io > 0 such that the assumption of Theorem 4.15%
is nonvacuously satisfied, it can be proved that there
are no periodic solutions. The proof hinges on the fact
that in order for the solution to be periodic there must

dv ad,

i x> o . =V * |
be a time t 0 such that dt(t )y < O, Epad

J =n, m, or h, v(t*) = 0, n(t*) = n(0), m(t*) = m(0) angd

t*) = O for

h(t*) = h(0). Such a t* would occur at the end of a
refractory period of v. But it follows from the assumption
of Theorem 4.13% that lor any such t* there is a tinme

ty < t* such that m(t1) = n(0), m(t) € m(0) for %t ¢ [tl,t“]
and v(t) > O for t ¢ (t],ti). It also follows that there
is some t,, t; < t, < t*, such that m(t,) = u(t,) ard

m(t) S u(t) for t ¢ [t?,t']. The only way for m(t*) to

be equal to m(0) is for m(t*) = pn(t* which cannot happen
unless p is stationary at t*¥. But u stationary at t*
implies v is stationary at t* and we have already that
() < o.

OQur numerical computations show that the assumption
of Theorem 4.1% is nonvacuously satisfied for Io less than
approximately 80 puA/cm®. For larger Io this assumption
is satisfied vacuously. For values of I_ greater than

0
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approximately 100 uwA/cm” the solution v never returns to
zero and the initial point is never taken on a second time,
so there can be no periodic solutions. Tor Io in the
approximate interval 80 uA/cm® < I, <100 pA/cm® , the
numerical evidence indicates that v is bounded above by
about 1 mv and is positive only for one brief period which
occurs after the first impulse. In this time intervel m
is near m(0) but n has values near its maximum and h has
values near its minimum, both of them far away from the
initial values. Therefore, for any Io > 0O such that the
assumption of Theorem 4.1% is vacuously satisfied, the
solution does not appear to be Poisson-stable and hence
not periodic. Hence the numerical evidence indicates that

there is no periodic solution for any I_ > O,

4. GStationary Points at Infinity and Recurrent Orbits

The discussions of Sections 2 and % indicate that for
I, > 0 the semi-orbit pertaining to the solution of the
initial value problem (2.13) is such that any closed finite
segment of it is homeomorphic to the closed unit interval
[0,1]. It was shown numerically, in {71, that for large
Io cells with a plateau type tehavior could be modeled;
i.e., for large IO the solution component v appeared to tend
to a constant which was an interior point of the interval
(w,12). If we knew that this information implied that the

semi-orbit tended to an interior point of D then this point,
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by the theory of Section 1, would be a stationary point

for the system. The following theorem proves Jjust that.

Theorem 7.5. Let Io > 0. Let (v(t),n(t),m(t),h(t))

be the solution of (2.13) on [0,0) corresponding to D.

Suppose lim v(t) - ¥ where Vv ¢ (w,12). Then
t—0 — -

lim J(t) = fJﬁ‘r) for J = n, m, and h,
t—®
Proof. Let € > O. Let J be one of n, m, or h and
Q be the corresponding function v, u, or n. We have seen
early in the paper that Q is an analytic function of t and
that fJ is an analytic function of v. Hence both are
continuous functions of their variables. Therefore since

e = fJ ° v we have

1im e(t) = 1lim (fJ o v)(t)
t—0m t—00

= lim fJ(v(t))
t—

= £;( 1im v(%))
t—

= fJ(G) .

(7.3)

Now V & (w,12) implies by Proposition 4.2 that
fJQu) > fJ(G) > fJ(l2) if J is either n or m, and
£:(12) > fJ(%}) > f;(w) if J is h. This implies that fJ(\'})
is an interior point of [O,11.
Let T

Q
|e(t) - fJ(Q) |< €. ’I‘Q exists by (7.3). Therefore

> O be the time such that t > Ty implies
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inf o(t) > £ (V)
t > Ty "

sup p(t) € £.(¥) + €.
t>T(,& J

(Case 1.) 3uppose there exists t € (0,® such that

inf p(t) £ J(%) £ s (t).
tlz TS thpTS

Then it follows from Proposition #.1 that for all t > t©

inf t) £ J(t) £ t
SR 29 5 e o0

and thus
l3(t) - £ < €.
Now suppose such a t does not exist. Then for all t € (0,%)

we have either

(Case 2.) J(t) < 1nf Q<S)

or

(Case 3.) J(t) > “uD Q(S)
W

In Case 2., we have that J(t) < Q(t) for ull t > T, and

therefore by Propogsition 4.1 that J is a strictly increasiug

function in (Te,m). J is also bounded above by 1nf Q( t).

Therefore there exists some point s; ¢ (041) such that

lim J(t) = SJ-
t—®

Similarly, in Case 3,Jd is @ strictly decrcasing function
in (Te ,®) and is bounded below implying that there exists
some point s; & (0,1) such that

1lim J(%)

= 3 .
t—>00 J
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In any one of the three possible cases we have that for

J = n, m, or h there exist constants s and Sp such

n* 5m?

that 1lim J(t) = s
t—®

(v(t) ,n(t) ,m(t) ,h(t)) converges to an interior point of D.

J* Therefore the solution
By Section 1 this implies that (Q,sn,sm,sh) is a stationary
point of the system which implies, by the proof of

’ _ A _ A _ A
Theorem 7.4, that s, = fn(v), Sy = fm(v), and s, = fh(v).
(This last statement also implies that Cases 2 and 3 are
not possible, giving us the same result by Case 1 for

each function.)

The case used in [ 7] to illustrate the plateau behavior
used the parameters I_ = 500 uA/cm’ , éNa = .192 mho/cm® ,
and vp = -8.1588 mv with the other parameters the standard
ones for the 6.3° Centigrade case. Tor this case equation
(7.2) yields the value v = -35.237402 mv. Solving the
system numerically we get that v converges to some interior
point. The convergence is very rapid so that when t
reached 35.0 ms the numerical value for v was constant to
eight digits and was the value v = =35.,237400 mv., This
result strongly indicates that for these values of the
parameters the semi-orbit was tending to a stationary
point at infinity. Using this result as a hint we checked
the numerical computations for other wvalues of Io run
earlier. The results are that for any Io below what is

called in (7] the limit of thresholds the solution v
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tended toward a constant after, in some cases, several
impulses. We also found the same behavior for any IO above

what is called in [7] the overload value of Io' Between

these two values the solutions were oscillatory for as
long as the computations were run. Table 4 shows some of
the cases run where the semi-orbit tended to a stationary
point. One important result of this discovery is that we
can now choose the value of voltage which we wish the
plateau to "rest on," because once that value is chosen,
(7.2) provides the Io. The oscillatory numerical solutions
exhibited the following behavior: being above threshold,
there is first a large negative potential spike followed
by the series of smaller impulses., Every impulse after
the first for these values of Io were of consistent
height and showed no evidence of damping as the numerical
solutions for values of I_ above the "overload value' and
below the "limit of thresholds" value.

We conclude the following: 1in the perspective of
Section 1 these numerical results indicate that for IO
below the "limit of thresholds" or above the "overload
value'" the set of 1limit points {1l of the semi-orbit consists
of only one point. For Io between these values fl consists
of more than one point and hence 1s connected, compact,
and invariant. Corollary 7.% would then indicate that [l
contains a recurrent orbit. IEvidently, the solution for

such Io approached this recurrent orbit as t—=®. Because
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of the difference of size of the first and later impulses
the initial point could not be in the minimal set because
if it were, Theorem 7.2 would indicate that the whole
semi-orbit is recurrent and the first impulse could not

be different in size from the later impulses. Further
work on this subject will concentrate on providing theorems
to substantiate the strong numerical evidence presented

here,
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911

TABLE 4., The Asymptotic Approach of the Solutions of (2.13) to the Stationary

Values (¥,n,m,h) Given by Equation (7.2)

I A

I, v n n n v n m h
(mA/cm ) (given by (7.2)) at maximum time of numerical solutions¥

.00227 |-1.6937574 .34392137 .06450145 ,53593264 {-1.6937605 .34392134 ,06450148 ,53593236
.00228 |-1.7002910 ,34402360 ,06455012 ,53569794 |-1.7002960 ,34402362 .06455017 .53569823
.00597 |-3.7445131 .37628111 ,08146027 ,46231215 |-3,7432837 .37627109 .CB8144714 ,46232459
.00598 |-3.7492619 .37635654 ,08150365 ,46214306 |-3,7529980 , 27639810 ,08154789 ,46208179
.00623 [-3.8668821 , 37822534 ,08258453 ,45795891 |-3.8576965 37519443 08249357 45798975
. 300 -28,118960 ,71116722 ,58121622 ,03648831 |-28,118962 ,71116717 ,58121627 .03648831
.600 ~-36,688485 ,78397149 ,76496364 ,01662547 |-36,688482 ,78397150 76496361 ,01662548
2.30914 |=73.999980 .92823025 .98689442 ,001748853|-73.9299960 .92823034 ,98689439 ,00174891
4,1208 }-114,99993 ,97250197 .99925392 ,00022279 |-114,99995 .97250197 .99925392 ,00022340

*The maximum time was: 100 ms for I, = .0C227, .00228, ,00597, .00598, and ,300;
200 ms for Io.: .00623%;: 32 ms for Io = ,600; 16 ms for Io = 2.,309143; 14 ms for I0 = 4,1208.



APPENDIX: One Equivalent First Order Integro-

differential Zquation

Part of the difficulty involved in a mathematical
investigation of system (2.13) is that this system consists
of four nonlinear equations. It would be convenient if we
could express this system in some simpler way. The following
theorem proves the equivalence of system (2.13) and one
first order integro-differential equntion. While one might
gquestion whether the resulting equation is much simpler, yet
it is one equation and also owens up the possibilities of
studying the Hodgkin-Huxley equations using the theory of
Integro-differential Tgquations. Althoush we have not made
use of this thceorem, it is certainly closely related and

is thus included here.

Theorem A.l. Let (v(t),n(t),m(t),h(t)) be the solution

of the initial value problem (2.13). Let

-t
wJ(t,v) = J(0)exp —‘f(aJ * V. + By oo v)(x)dx
0
v
- exp —j’(aJ * v+ Byoe v) (x)dx
: 0

. (-aJ . V)(S)exp‘i(aJ ° v + By o v) (x)dx {ds
0]

where J = n, m, or h and v is an implicit function of %t.
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Consider

(2.1 H = (v, 0) = B (v,0,(6,7) 0, (t,v) 0, (t,7))

Then if ¥ is a solution of (A.l), then

(V(t),mn(t,v(t)),@m(t,V(t)),wh(t,$(t))) is a solution of
(2.13). Conversely, if (v(%),n(t),n(t),h(t)) is a
solution of (2.13) then Vv solves (A.1l).

Proof. Let (v(t),n(t),m(t),B(t)) solve (2.13). Then
using the function v we have that o, © v, (an + Bn) ° v,
o © v, (am + Bm) ° v, o © v, and (ah + Bh) ° ¥ are all
functions of t and hence given v the functions H2, HB’ and

H, of (2.13) become linear. Therefore we can solve these

last three equations by elementary means obtaining

t
J(t) = J(O)exp[— S(oc,J ° vV + By ° V)(x)dx]
0

t
- exp[-g(ocJ ° v + BJ ° \_r)(x)dx]

T
s
. (—aJ ° V)(S)exp[jr(aJ °© vV + By o V)(X)dx]ds
0]
0

for J = n, m, and h as the solutions of the second, third,
and fourth equations of the system respectively. 3Since

the solution of the system is unique, we have n = n, m = m,
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and h = h. ‘'Therefore since n(t) is Jjust mn(t,G),

n(t) = mm(t,ﬁ), and h(t) = @h(t,G) we have that

\

8v/dt = H](\“r,ﬁ,a,ﬁ) = Hl(\‘f,q,n(t,x'r),@m(t,ﬁ),cph(tﬁ)) H](V,b)
which implies that Vv solves (A.l1). Conversely, let ¥ be a
solution of (A.1). .We claim that
(V(t),¢n(t,V),@m(t,V),mh(t,ﬁ)) is a solution of (2.13)

satisfying the initial conditions. Consider

i
é% = Hg(v,n).

Let n be defined by n(t) wn(t,V). Then if we let

G(x)de,

t
G(t) = (an o ¥ + B, ° ¥(t) and (L) = cxp[;
- 0

we have

il

dn d@n
L) = ) = n(O)(-DIG(HF(E)

t
- (=L)G(IT(H) fo[(-ocn ° ?’;)(s)/]?(s)]ds

- o) [(ma s W) /Fl0)]
= =n(0)G(HF(E)

t

v 60T § [(-a © ¥)(s)/F(s)]as
]

oo (F(6))

£
= —G(t)F(t){n(O) - SO[(—ocn 0 'V')(S')/F(s)]dS}

+ an(V(t))
- @ (F(5) - (a (F(£) + B, (F(£)))n(e)

= Hz(v,n)
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Thus the second enuation is solved. The third and fourth
are solved similarly and the initial conditions are
satisfied trivially. Therefore if (¥,n,m,h) solves the

first equation,we are done. Now

(6) = B(F,6) = 1 (F,0,(6,%),0,(5,%) ,0,(£,%))

H1($,n,m,h),

so (¥,n,m,h) is a solution of (2.13).
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